PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Application of extended Kalman filter for estimation of periodic disturbance and velocity ripple reduction in PMSM drive

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper an application of extended Kalman filter (EKF) for estimation and attenuation of periodic disturbance in permanent magnet synchronous motor (PMSM) drive is investigated. Most types of disturbances present into PMSM drive were discussed and described. The mathematical model of the plant is presented. Detailed information about the design process of the disturbance estimator was introduced. A state feedback controller (SFC) with feedforward realizes the regulation and disturbance compensation. The theoretical analysis was supported by experimental tests on the laboratory stand. Both time- and frequency-domain analysis of the estimation results and angular velocity were performed. A significant reduction of velocity ripple has been achieved.
Rocznik
Strony
983--995
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Department of of Automatics and Measurement Systems, Nicolaus Copernicus University in Torun, ul. Grudziadzka 5, 87-100 Torun, Poland
  • Department of of Automatics and Measurement Systems, Nicolaus Copernicus University in Torun, ul. Grudziadzka 5, 87-100 Torun, Poland
  • Institute of Control and Industrial Electronics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
Bibliografia
  • [1] J. Yang, W. Chen, S. Li, L. Guo, and Y. Yan, “Disturbance/Uncertainty Estimation and Attenuation Techniques in PMSM Drives – A Survey”, IEEE Trans. on Ind. Electron. 64(4), 3273–3285 (2017).
  • [2] L.J. Niewiara, T. Tarczewski, and L.M. Grzesiak, “Application of State Feedback Controller with Feedforward for velocity ripples reduction of PMSM drive at low speed operation”, 21st Eur. Conf. on Power Electron. and Appl. (EPE’19 ECCE Europe), Genova, 2019, pp. 1–10.
  • [3] Y.A.-R.I. Mohamed and E. El-Saadany, “A current control scheme with an adaptive internal model for torque ripple minimization and robust current regulation in PMSM drive systems”, IEEE Trans. Energy Convers. 23 (1), 92–100 (2008).
  • [4] S. Geng, Y. Zhang, H. Qiu, C. Yang, and R. Yi, “Influence of harmonic voltage coupling on torque ripple of permanent magnet synchronous motor”, Arch. Elect. Eng. 68 (2), 399–410 (2019).
  • [5] K. Erwinski, K. Kowalski, and M. Paprocki, “Neural Network Contour Error Prediction of a Bi-axial Linear Motor Positioning System”, 16th Int. Conf. on Inform. in Control, Automat. and Robot. (ICINCO), 2019.
  • [6] D.-W. Chung and S.-K. Sul, “Analysis and compensation of current measurement error in vector-controlled AC motor drives”, IEEE Trans. on Ind. Appl. 34 (2), 340–345 (1998).
  • [7] R. Errouissi, M. Ouhrouche, W.-H. Chen, and A. Trzynadlowski, “Robust nonlinear predictive controller for permanent-magnet synchronous motors with an optimized cost function”, IEEE Trans. Ind. Electron. 59 (7), 2849–2858, (2012).
  • [8] S. Chai, L. Wang, and E. Rogers, “A Cascade MPC Control Structure for a PMSM with Speed Ripple Minimization”, IEEE Trans. Ind. Electron. 60 (8), 2978–2987 (2013).
  • [9] S. Li and H. Gu, “Fuzzy adaptive internal model control schemes for PMSM speed-regulation system”, IEEE Trans. Ind. Informat. 8 (4) 767–779 (2012).
  • [10] B. Ferretti, G. Magnani, and P. Rocco, “Modeling, identification, and compensation of pulsating torque in permanent magnet AC motors”, IEEE Trans. Ind. Electron. 45 (6), 912–920 (1998).
  • [11] A. Houari et al., “An Effective Compensation Technique for Speed Smoothness at Low-Speed Operation of PMSM Drives”, IEEE Trans. Ind. Appl. 54 (1), 647–655 (2018).
  • [12] K. Urbanski, “A new sensorless speed control structure for PMSM using reference model”, Bull. Pol. Ac.: Tech. 65 (4), 489–496 (2017).
  • [13] H. Liu and S. Li, “Speed control for pmsm servo system using predictive functional control and extended state observer”, IEEE Trans. Ind. Electron. 59 (2), 1171–1183 (2012).
  • [14] S. Li, C. Xia, and X. Zhou, “Disturbance rejection control method for permanent magnet synchronous motor speed-regulation system”, Mechatronics 22 (6), 706–714 (2012).
  • [15] T.M. Jahns and W.L. Soong, “Pulsating torque minimization techniques for permanent magnet AC motor drives-a review”, IEEE Trans. on Ind. Electron. 43 (2), 321-330 (1996).
  • [16] E. Sariyildiz and K. Ohnishi, “Stability and robustness of disturbance observer-based motion control systems”, IEEE Trans. Ind. Electron. 62 (1), 414–422 (2015).
  • [17] Y.-R. Mohamed, “A hybrid-type variable-structure instantaneous torque control with a robust adaptive torque observer for a high-performance direct-drive PMSM”, IEEE Trans. Ind. Electron., 54 (5) 2491–2499 (2007).
  • [18] T. Tarczewski, M. Skiwski, L.J. Niewiara, and L.M. Grzesiak, “High-performance PMSM servo-drive with constrained state feedback position controller”, Bull. Pol. Ac.: Tech. 66 (1), 49–58 (2018).
  • [19] T. Pajchrowski, “Application of neural networks for compensation of torque ripple in high performance PMSM motor”, 19th Eur. Conf. on Power Electron. and Appl. (EPE’17 ECCE Europe), Warsaw, 2017, pp. 1–8.
  • [20] T. Pajchrowski and A. Wojcik, “The problem of rotational speed unevenness in direct drives with permanent magnet synchronous motors”, Przegląd Elektrotechniczny 94 (5), 128–132 (2018).
  • [21] T. Tarczewski, Ł. Niewiara, and L.M. Grzesiak, “Torque ripple minimization for PMSM using voltage matching circuit and neural network based adaptive state feedback control”, 16th Eur. Conf. on Power Electron. and Appl., Lappeenranta, 2014, pp. 1–10.
  • [22] L.J. Niewiara, T. Tarczewski, and L.M. Grzesiak, “Application of DC/DC/AC dual voltage source inverter for current harmonics reduction in PMSM drive”, 19th Eur. Conf. on Power Electronics and Applications (EPE’17 ECCE Europe), Warsaw, 2017, pp. 1–9.
  • [23] L. Gašparin and R. Fiser, “Impact of manufacturing imperfections on cogging torque level in PMSM”, IEEE 9th Int. Conf. on Power Electronics and Drive Systems, Singapore, 2011, pp. 1055–1060.
  • [24] S. Hwang and J. Kim, “Dead Time Compensation Method for Voltage-Fed PWM Inverter”, IEEE Trans. on Energy Convers. 25 (1), 1–10 (2010).
  • [25] J. Kim, M. Yoon, J. Hong, and S. Kim, “Analysis of cogging torque caused by manufacturing tolerances of surface-mounted permanent magnet synchronous motor for electric power steering”, IET Electric Power Appl. 10 (8), 691–696 (2016).
  • [26] Ł.J. Niewiara, T. Tarczewski, and L.M. Grzesiak, “Application of extended Kalman filter for estimation of periodic disturbance in PMSM drive”, Proceedings of the XIV Scientific Conference SENE’2019, 2019, pp. 1–8.
  • [27] Z.Q. Zhu, S. Ruangsinchaiwanich, and D. Howe, “Synthesis of cogging-torque waveform from analysis of a single stator slot”, IEEE Trans. on Ind. Appl. 42 (3), 650–657 (2006).
  • [28] D. Janiszewski, “Extended Kalman Filter Based Speed Sensorless PMSM Control with Load Reconstruction”, IECON 2006 32nd Ann. Conf. on IEEE Ind. Electron., Paris, 2006 pp. 1465–1468.
  • [29] S. Bolognani, R. Oboe, and M. Zigliotto, “Sensorless full-digital PMSM drive with EKF estimation of speed and rotor position”, IEEE Trans. on Ind. Electron. 46 (1), 184–191 (1999).
  • [30] G.R. Gopinath and P.D. Shyama, “Sensorless control of PMSM using an adaptively tuned SCKF”, The Journal of Engineering 2019 (17), 4304–4308 (2019).
  • [31] Ł.J. Niewiara, “State feedback control for a PMSM drive with complex DC/DC/AC converter” (original title: Sterowanie ze sprzężeniem od wektora stanu napędu z silnikiem PMSM i przekształtnikiem złożonym DC/DC/AC), Ph.D. Thesis, Warsaw, Warsaw University of Technology, 2018.
  • [32] L. Jarzebowicz, “Errors of a Linear Current Approximation in High-Speed PMSM Drives”, IEEE Trans. on Power Electron. 32 (11), 8254–8257 (2017).
  • [33] L. Jarzebowicz, “Impact of low switching-to-fundamental frequency ratio on predictive current control of PMSM: A simulation study”, 25th International Workshop on Electric Drives: Optimization in Control of Electric Drives (IWED), 2018, pp. 1–5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23d34e3d-16ad-4852-bd5e-4c76bd3321b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.