PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of Conductive Cocoon Silk Composites

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Synteza kompozytów z przewodzącymi kokonami jedwabnymi
Języki publikacji
EN
Abstrakty
EN
Herein we report on the preparation of polyaniline (PANI) composite using a cocoon by in situ chemical oxidative polymerisation. The composites thus prepared were characterised by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), infrared (IR), and electron spin resonance (ESR) spectroscopy. We confirmed the PANI/cocoon composite and subsequent carbonisation allowed the formation of micro-sized wafer-shaped carbon. The polymerisation reaction occurs in a chiral reaction field of the silk surface, which can be referred to as bio-interface polymerisation.
PL
W artykule opisano przygotowanie polianilinowych (PANI) kompozytów przy zastosowaniu kokonów i przeprowadzeniu in situ chemicznej utleniającej polimeryzacji. Wytworzone kompozyty zostały scharakteryzowane za pomocą skaningowego mikroskopu elektronowego (SEM), analizy termograwimetrycznej (TGA), spektrofotometrii w podczerwieni (IR) oraz elektronowego rezonansu spinowego (ESR). Potwierdzono, że otrzymane kompozyty, a następnie ich karbonizacja umożliwiły powstawanie mikroskopijnej wielkości płytek węglowych.
Rocznik
Strony
17--23
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
  • Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba Ibaraki, 305-8573 Japan
autor
  • Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba Ibaraki, 305-8573 Japan
Bibliografia
  • 1. Chiang CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC and MacDiarmid AG. Electrical Conductivity in Doped Polyacetylene. Phys. Rev. Lett. 1977; 39: 1098-1101.
  • 2. Bhattacharyya S, Kymakis E and Amaratunga GAJ. Photovoltaic Properties of Dye Functionalized Single-Wall Carbon Nanotube/Conjugated Polymer Devices. Chem. Mater.2004;16: 4819-4823.
  • 3. Kobayashi T, Yoneyama H and Tamura H. Polyaniline Film-Coated Electrodes as Electrochromic Display Devices. J. Electroanal. Chem.1984; 161: 419-423.
  • 4. Kang ET, Neoh KG and Tan KL. Polyaniline: A Polymer with Many Interesting Intrinsic Redox States, Prog. Polym. Sci. 1998; 23: 277-324.
  • 5. Paul EW, Ricco AJ and Wrighton MS. Resistance of Polyaniline Films as a Function of Electrochemical Potential and the Fabrication of Polyaniline-Based Microelectronic Devices. J. Phys. Chem.1985; 89: 1441-1447.
  • 6. Tan S, Zhai J, Wan M, Meng Q, Li Y, Jiang L and Zhu D. Influence of Small Molecules in Conducting Polyaniline on the Photovoltaic Properties of Solid-State Dye-Sensitized Solar Cells. J. Phys. Chem. B2004; 108: 18693-18697.
  • 7. Pinto NJ, Johnson Jr. AT, MacDiarmid AG, Mueller CH, Theofylaktos N, Robinson DC and Miranda FA. Electrospun Polyaniline/Polyethylene Oxide Nanofiber Field-Effect Transistor. Appl. Phys. Lett.2003; 83: 4244-4246.
  • 8. Yan J, Wei T, Shao B, Fan Z, Qian W,Zhang M and Wei F. Preparation of a Graphene Nanosheet/Polyaniline Composite with High Specific Capacitance.Carbon 2010; 48: 487-493.
  • 9. Nakajima K, Kawabata K and Goto H. Water Soluble Polyaniline/Polysaccharide Composite: Polymerization, Carbonization to Yield Carbon Micro-Bubbles. Synth. Met.2014; 194: 47-51.
  • 10. Lei Z, Chen Z and Zhao XS.Growth of Polyaniline on Hollow Carbon Spheres for Enhancing Electrocapacitance.J. Phys. Chem. C2010; 46: 19867-19874.
  • 11. Mirmohseni A and Wallace GG. Preparation and Characterization of Processable Electroactive Polyaniline–Polyvinyl Alcohol Composite. Polymer2003; 44: 3523-3528.
  • 12. Trchová M, Konyushenko EN, Stejskal J, Kovářová J and Ćirić-Marjanović G. The Conversion of Polyaniline Nanotubes to Nitrogen-Containing Carbon Nanotubes and Their Comparison with Multi-Walled Carbon Nanotubes. Polym. Deg. Stab. 2009; 94: 929-938.
  • 13. Vinu A, Anandan S, Anand C, Srinivasu P, Ariga K and Mori T. Fabrication of Partially Graphitic Three-Dimensional Nitrogen-Doped Mesoporous Carbon Using Polyaniline Nanocomposite Through Nanotemplating Method. Micropor. Mesopor. Mater. 2008; 109: 398-404.
  • 14. Teramoto H, Kakazu A and Asakura T. Native Structure and Degradation Pattern of Silk Sericin Studied by 13C NMR Spectroscopy. Macromolecules 2006; 39: 6-8.
  • 15. Chen F, Porter D and Vollrath F. Silk Cocoon (Bombyx Mori): Multi-Layer Structure and Mechanical Properties. Acta Biomaterialia 2012; 8: 2620-2627.
  • 16. Magoshi J, Magoshi Y and Tanaka T. Studies of Silk (1) Kinds of Cocoon and Chemical Structure of Silk. J. Text. Soc. Jpn. 2015; 71: 176-181.
  • 17. Garel A, Deleage G and Prudhomme JC. Structure and Organization of the Bombyx Mori Sericin 1 Gene and of the Sericins 1 Deduced from the Sequence of The Ser 1B cDNA. Insect Biochem. Mol. Biol.1997; 27: 469-477.
  • 18. Takasu Y, Yamada H and Tsubouchi K. Isolation of Three Main Sericin Components from the Cocoon of the Silkworm. Bombyx mori, Biosci. Biotechnol. Biochem. 2002; 6: 2715-2718.
  • 19. Voegeli R, Meier J and Blust R. Sericin Silk Protein: Unique Structure and Properties. Cosmet. Toiletries.1993; 108: 101-108.
  • 20. Teramoto H, Nakajima K and Takabayashi C. Chemical Modification of Silk Sericin in Lithium Chloride/Dimethyl Sulfoxide Solvent with 4-Cyanophenyl Isocyanate. Biomacromolecules 2004; 5: 1392-1398.
  • 21. Takeuchi A, Ohtsuki C, Miyazaki T, Tanaka H, Yamazaki M and Tanihara M. Deposition of Bone-Like Apatite on Silk Fiber in a Solution that Mimics Extracellular Fluid. J. Biomed. Mater. Res. 2003; 65A: 283-289.
  • 22. Tsubouchi K, Igarashi Y, Takasu Y and Yamada H.Sericin Enhances Attachment of Cultured Human Skin Fibroblasts. Biosci. Biotechnol. Biochem. 2005; 69: 403-405.
  • 23. Zhang YQ. Applications of Natural Silk Protein Sericin in Biomaterials. Biotechnol. Adv. 20 (2002) 91-100.
  • 24. Kerkam K, Viney C, Kaplan D and Lombardi S. Liquid Crystallinity of Natural Silk Secretions. Nature1991; 349: 596-598.
  • 25. Denny M.The Physical Properties of Spider’s Silk and Their Role in the Design of Orb-Webs. J. Exp. Biol. 1976; 65: 483-506.
  • 26. Calvert P. Spinning Ties That Bind. Nature 1989; 340: 266.
  • 27. Vollrath F and Edmonds DT. Modulation of the Mechanical Properties of Spider Silk by Coating with Water. Nature 1989; 340: 305-307.
  • 28. Gosline JM and Denny MW, DeMont ME. Spider Silk as Rubber. Nature 1984; 309: 551-552.
  • 29. Demura M and Asakura T. Porous Membrane of Bombyx Mori Silk Fibroin: Structure Characterization, Physical Properties and Application to Glucose Oxidase Immobilization. J. Memb. Sci. 1991; 59: 39-52.
  • 30. Terada D, Yoshikawa C, Hattori S, Teramoto H, Kameda T, Tamada H and Kobayashi H. Improvement of The Transparency of Silk Fibroin Nanofiber Mat by Arranging Its Fiber Orientation. Bioinspired biomimetic and nanobiomater. 2011; 1-5.
  • 31. Kasoju N and Bora U. Silk Fibroin in Tissue Engineering. Adv. Healthcare Mater. 2012; 1: 393-412.
  • 32. Willocox PJ, Gido SP, Muller W and Kaplan DL. Evidence of a Cholesteric Liquid Crystalline Phase in Natural Silk Spinning Processes. Macromolecules 1996; 29: 5106-5110.
  • 33. Teramoto H and Miyazawa M. Molecular Orientation Behavior of Silk Sericin Film as Revealed by ATR Infrared Spectroscopy. Biomacromolecules 2005; 6: 2049-2057.
  • 34. Aoki I. Studies on Sericin Part 2, On Sericin of B. Mori Reared with Artificial Diet. Sericult J. Sci. Jpn. 42 (1973) 53-60.
  • 35. Kahol PK and Pinto NJ. Electron Paramagnetic Resonance Investigations of Electrospun Polyaniline Fibers. Solid State Commun. 2002; 124: 195-197.
  • 36. Yang SM, Chen KH and Yang YF. Synthesis of Polyaniline Nanotubes in the Channels of Anodic Alumina Membrane. Synth. Met. 2005;152: 65-68.
  • 37. MacDiarmid AG and Epstein AJ. The Concept of Secondary Doping as Applied to Polyaniline. Synth. Met. 1994; 65: 103-116.
  • 38. Aphesteguy JC and Jacobo SE. Composite of Polyaniline Containing Iron Oxides. Physica B. 2004; 354: 224-227.
  • 39. Zhang H, Magoshi J, Becker M, Chen JY and Matsunaga R. Thermal Properties of Bombyx Mori Silk Fibers. J. Appl. Polym. Sci. 2002; 86: 1817-1820.
  • 40. Goto H, Jwa J, Nakajima K and Wang A. Textile Surface Interfacial Asymmetric Polymerization. J. Appl. Polym. Sci. 2014; 131: 41118.
  • 41. Gu Y and Huang J. Nanographite Sheets Derived from Polyaniline Nanocoating of Cellulose Nanofibers. Mater. Res. Bulletin 2013; 48: 429-434.
  • 42. Kaitsuka Y and Goto H, Chemical Polymerisation of Aniline in the Presence of Sericin, Int. Lett. Chem. Phys. Astro. 2015; 46: 48-53.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23d28b4f-d91c-4285-bd8b-93a397232326
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.