PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Factors determining the accumulation of pentachlorophenol : a precursor of dioxins in bottom sediments of the Gulf of Gdańsk (Baltic Sea)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pentachlorophenol (PCP) and its derivatives are considered to be the precursors of dioxins, thus their concentrations in environmental compartments remain relatively correlated. Unlimited production and usage of PCP in recent decades may have posed a potential ecological threat to marine ecosystems due to uncontrolled discharge of this contaminant into the Vistula River and finally into the Gulf of Gdańsk. Since there are no data on PCP concentration in sediments of the southern part of the Baltic Sea, the level of contamination has been examined and possible influence of sediment properties in the Gulf of Gdańsk on the accumulation intensification has been investigated. The study has resulted in the evaluation of an efficient analytical procedure characterized by a low detection limit (LOD<1 ng g−1 d.w.). Instrumental analyses have been supplemented with Microtox® bioassay in order to assess the sediment toxicity. The obtained concentrations in collected samples varied from below the LOD in sandy sediments to 179.31 ng g−1 d.w. in silty sediments, exceeding the PNEC value of 25 ng g−1 d.w. (Predicted No Effect Concentration) estimated for the Baltic Sea (Muir & Eduljee 1999). It has been proven that properties of sediments from the Gulf of Gdańsk, including pH, Eh of bottom water, the content of water and organic matter, affect the rate of PCP accumulation. High toxicity has been recorded in the bottom sediments of the Gdańsk Deep but no statistically significant correlation between PCP concentration and the sediment toxicity has been observed. Analysis of PCP concentration distribution in sediment cores revealed that the surface layer is the most polluted one, which indicates a continuous inflow of PCP from the Vistula River. Horizontal PCP distribution in the sediment from the Gdańsk Deep reveals variability similar to that observed for highly chlorinated dioxins (Niemirycz & Jankowska 2011).
Rocznik
Strony
154--164
Opis fizyczny
Bibliogr. 62 poz., rys., tab., wykr.
Twórcy
  • Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
  • Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
autor
  • Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
Bibliografia
  • [1]. Alonso M.C., Puig D., Silgoner I., Grasserbauer M. & Barcelo D. (1998). Determination of priority phenolic compounds in soil samples by various extraction methods followed by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A. 823: 231–239, DOI: 10.1016/j.wasman.2011.01.021.
  • [2]. Baker J.I. & Hites R.A. (2000). Is combustion the major source of polychlorinated dibenzo-p-dioxins and dibenzofurans to the environment? A Mass Balance Investigation. Environ. Sci. Technol. 34: 2879–2886. DOI: http://dx.doi.org/10.1021/es9912325.
  • [3]. Borysiewicz M. (2008). Risk profile of pentachlorofenol, Institute Of Environmental Protection. Warsaw. Poland.
  • [4]. Calace N., Ciardullo S., Petronio B., Pietrantonio M., Abbodanzi F., Campisi T. & Cardellicchio N. (2005). Influence of chemical parameters (heavy metals, organic matter, sulphur and nitrogen) on toxicity of sediments from the Mar Piccolo (Taranto, Ionian Sea, Italy). Microchem. J. 79: 243–248. DOI: 10.1016/j.microc.2004.10.005.
  • [5]. Campisi T., Abbondanzi F., Casado-Martinez C., DelValls T.A., Guerra R. & Iacondini A. (2005). Effect of sediment turbidity and color on light output measurement for Microtox Basic Solid-Phase Test. Chemosphere 60: 9–15. DOI: 10.1016/j.chemosphere.2004.12.052.
  • [6]. Dimou A., Sakellarides Th., Sakkas V & Albanis T. 2003). Concentrations levels of phenols in seawater and sediments in marine coastal line of Pieria (Thermaikos Gulf) by HPLC-UV after SPE preconcentration, Protection and Restoration of the Environment VII. MykonoS2004. DOI: 10.1016/j.jhazmat.2008.12.117.
  • [7]. Dmitruk U., Zbieć E. & Dojlido J. (2006). Chlorophenols in water environment. Environmental Protection 28(3):25–28. DOI: 10.1002/clen.200700107.
  • [8]. Dunlap P. (1999), Quorum Regulation of luminescence of Vibrio fisheri, Journal of Molecular Microbiology and Biotechnology.1(1):5–12. DOI:10.1007/s002030050254.
  • [9]. Euro Chlor Risk Assessment for the Marine Environment (1999). Pentachlorophenol. OSPARCOM Region — North Sea. Draft
  • [10]. Furukawa, A., Otsuka, H.& Kiyono, J. (2006). Structural Damage Detection Method Using Uncertain Frequency Response Functions. Computer-Aided 283 Civil and Infrastructure Engineering 21: 292–305. DOI: 10.1177/1475921707081980.
  • [11]. Graca B., Witek Z., Burska D., Białkowska I., Łukawska-Matuszewska K. & Bolałek J. (2006). Pore water phosphate and ammonia below the permanent halocline in the southeastern Baltic Sea and their benthic fluxes under anoxic conditions. Journal of Marine Systems 63: 141–154. DOI: 10.1016/j.jmarsys.2006.06.003.
  • [12]. IARC (1997). Monographs and the evaluation of the carcinogenic risk of chemicals to man. Some fumigants, the herbicides 2,40D and 2,4,5-T, chlorinated dibenzodioxins and miscellaneous industrial chemicals. IARC-WHO. Lyon 15: 354–367. DOI: 10.1016/0045-6535 (92)90100-6.
  • [13]. Ingerslev F. & Nyholm N. (2000). Shake-flask test for determination of biodegradation rates of C-14-labeled chemicals at low concentrations in surface water systems, ECOTOX ENV.45(3):274–283. DOI: 10.1006/eesa.1999.1877.
  • [14]. Klamer H.J.C., Leonards P.E.G., Lamoree M.H., Villerius L.A., Akerman J.E. & Bakker J.F.(2005). A chemical and toxicological profile of Dutch North Sea surface sediments. Chemosphere 58: 1579–1587. DOI: 10.1016/j.chemosphere.2004.11.027.
  • [15]. Kramarska R., Kasiński J.R., 2008, Sedimentary environment of amber-bearing association along the polish -russian Baltic coastline, Exkurs f. und Ver?fftl.DGG. 46–57 .
  • [16]. Kwan K. & Dutka B.(1995). Comparative assessment of two Solid- Phase Toxicity Bioassays The Direct Sediment Toxicity Testing Procedure (DSTTP) and the Microtox® Solid- Phase Test (SPT). Bull. Environ. Contam. Toxicol. 55: 338–346. DOI: 10.1007/BF00206670.
  • [17]. Lahr J.L., Maas-Diepenveen, S.C Stuijfzand, P.E.G Leonards, J.M. Druke, S. Luecker, A. Espeldoorn, L.C.M. Kerkum, L.L.P. van Stee & A.J. Hendriks (2003). Responses in sediment bioassays used in the Netherlands: can observed toxicity be explained by routinely monitored priority pollutants?. Water Research 37: 1691–1710. DOI: 10.1016/S0043-1354(02)00562-6.
  • [18]. Liu P.Y., Zheng M.H. & Xu X.B. (2002). Phototransformation of polychlorinated dibenenzo-p-dioxins from photolysis of pentachlorophenol on soils surface. Chemosphere 46:1191–1193. ISSN: 0045-6535.
  • [19]. Łęczyński L. & Szymczak E. (2010). Własności fizyczne osadów dennych w: Fizyczne, biologiczne i chemiczne badania morskich osadów dennych (red. Bolałek J.). Gdańsk. Wydawnictwo Uniwersytetu Gdańskiego: 69–117 .
  • [20]. Magnusson K., Ekelund R., Dave G., Granmo Å., Förlin L., Wennberg L., Samuelsson M., Berggren M. & Broström-Lundén E. (1996). Contamination and correlation with toxicity of sediment samples from the Skagerrak and Kattegat. Journal of Sea Research 35(1–3): 223–234. ISSN: 1385-1101.
  • [21]. Matuszewska K., Bialkowska I. & Bolałek J.(2003). Interdependence between phosphorus forms in sediments and iron in interstitial waters the Gulf of Gdańsk. Oceanological and Hydrobiological Studies 32: 5–14. DOI: 10.1016/j.csr.2008.01.009.
  • [22]. Morales C., Canosa P., Rodrigues I., Rubi E. & Cela R. (2005). Microwave assisted extraction followed by gas chromatography with tandem mass spectrometry for the determination of triclosan and two related chlorophenols in sludge and sediments. J. Chromatogr. A. 1082: 128–135. DOI: 10.1007/s11270-013-1486-4.
  • [23]. Muir J. & Eduljee G. (1999). PCP in the freshwater and marine environment of the European Union. The Science of the Total Environment 236: 41–56. ISSN: 0048-9697.
  • [24]. Niemirycz E. & Jankowska D. (2011). Concentration and profiles of PCDD/Fs in sediments of major polish rivers and the Gdańsk Basin — Baltic Sea. Chemosphere 85: 525–532. DOI: 10.1016/j.chemosphere.2011.08.014.
  • [25]. Niemirycz E.(2008). Halogenated organic compounds in the environment in relation to climate change. Environmental Monitoring Library.Warsaw. 120.
  • [26]. Niemirycz E. (2010). Sprawozdanie z udziału w spotkaniu Grupy Specjalnej TZO w ramach Konwencji EKG ONZ w sprawie Transgranicznego Zanieczyszczenia Powietrza na Dalekie Odległości, Montreal, Materiały Ministerstwa Środowiska.
  • [27]. Niemirycz E. (2011). Dopływ substancji chemicznych do Morza Bałtyckiego, w: Uścinowicz Sz.,red., Geochemia osadów powierzchniowych Morza Bałtyckiego, 93–123.
  • [28]. Oh J. R., Chio H. K., Hong S. H., Yim U. H., Shim W. J., Kannan N. (2005). A preliminary report of persistent organochlorine pollutants in the Yellow Sea. Marine Pollutant Bulletin, 50: 217–222.
  • [29]. Padilla-Sanchez J.A., Plaza-Bolanos P., Romero-Gonzalez R., Garrido-Frenich A. & Martinez V.(2010). Application of a quick, easy, cheap, effective, rugged and safe-based method for the simultaneous extraction of chlorophenols, alkylphenols, nitrophenols and cresols in agricultural soils, analyzed by using gas chromatography-triple quadrupole-mass spect. J Chromatogr A. 1217: 5724. DOI: 10.1016/j.chroma.2010.07.004.
  • [30]. Penta Task Force (1997). Submission to the commission of the European communities in connection with suggestes proposal to amend the ninth amendment to council directive 76r769. Vulcan ChemicalsrKMG-Bernuth.
  • [31]. Parvez S., Venkataraman C. & Mukherj (2006). A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ. Int. 32: 265–268. DOI: 10.1016/j.envint.2005.08.022.
  • [32]. Pazdro K. (2004). Persistent Organic Pollutants in sediments from the Gulf of Gdańsk, Annual Environmental Protection 6: 63–75.
  • [33]. Persoon G., Marsalek B., Blinova I., Törökne A., Zarina D., Manusadzianas L., Nałęcz - Jawecki G., Tofan L., Stephanova N., Tothova L. & Kolar B. (2003). Praktyczna i prosta klasyfikacja poziomu toksyczności wód pitnych i ścieków przy użyciu systemów Microbiotest.
  • [34]. Piekarek-Jankowska H. (2010). Klasyfikacja osadów dennych w: Fizyczne, biologiczne i chemiczne badania morskich osadów dennych (red. Bolałek J.). Gdańsk. Wydawnictwo Uniwersytetu Gdańskiego: 119–130.
  • [35]. Rappe C. (1992). Sources of PCDDs and PCDFs, introduction, reaction, levels, patterns, profiles and trends. Chemosphere 25: 41–44. DOI: 10.1016/0045-6535(94)90103-1.
  • [36]. Ricking M., Beckman E. & Svenson A. (2002). PAHS and Microtox acute toxicity in contaminated sediments in Sweden. J. Soils Sed 2(3): 129–136. DOI: 10.1007/BF02988464.
  • [37]. Routti H., Bert van Bavel, Letcher R., Arukwe A., Chu S., Gabrielsen G. (2009), Concentrations, patterns and metabolites of organochlorine pesticides in relation to xenobiotic phase I and II enzyme activities in ringed seals (Phoca hispida) from Svalbard and the Baltic Sea. Environmental Pollution 157: 2428–2434. DOI: 10.1016/j.envpol.2009.03.008.
  • [38]. Salizzato M., Pavoni B., Ghirardini A.V. & Ghetti P.F. (1998). Sediment toxicity measured using Vibrio fischeri as related to the concentrations of organic (PCBs, PAHs) and inorganic (metals, sulphur) pollutants. Chemosphere 36(14): 2949–2968. ISSN: 0045-6535.
  • [39]. Saniewska D., Bełdowska M., Bełdowski J., Jędruch A., Saniewski M. & Falkowska L. (2014). Mercury loads into the sea associated with extreme flood. Environmental Pollution 05/2014. 191C:93–100. DOI:10.1016/j.envpol.2014.04.003.
  • [40]. Sapota G. (2006). Peristent Organic Pollutants (POPs) in bottom sediments from the Baltic Sea, Oceanological and Hydrobiological Studies. Vol. XXXV(4):295–306.
  • [41]. Scelza R. (2008). Response of an agricultural soil to pentachlorophenol (PCP) contamination and the addition of compost or dissolved organic matter. Soil Biology & Biochemistry 40: 2162–2169. DOI: 10.1016/j.soilbio.2008.05.005.
  • [42]. Shepard F. P.(1954). Nomenclature based on sand-silt-clay ratios, J. sediment. Petrol. 24: 151–158.
  • [43]. Stephenson M.T. (1992). A survey of produced water studies, in: Technological, environmental issues and solutions, edited: J. P. Ray & F. Rainer Engelhardt.
  • [44]. Sundqvist K. (2009). Sources of dioxins and other POPs to the marine environment: Identification and apportionment using pattern analysis and receptor modelling. Doctoral Dissertation. Umeå University. Sweden.
  • [45]. Sundqvist K., Tysklind M., Cato I., Bignert A. & Wiberg K. (2009). Levels and homologue profiles of PCDD/Fs in sediments along the Swedish coast of the Baltic Sea, Environmental Science Pollution Reaserch 16: 396–419. DOI: 10.1007/s11356-009-0110-z.
  • [46]. Svenson A., Edsholt E., Ricking M., Remberger M. & Röttorp J.(1996). Sediment contaminats and Microtox Toxicity Tested in a Direct Contact Exposure Test. Environmental Toxicology and Water Quality, An International Journal. 11: 293–300.
  • [47]. SWEPA (2009). The role of pentachlorophenol treated wood for emissions of dioxins into the environment. Report 5935.
  • [48]. Szefer P. (2002). Metals, metalloids and radionuclides in the Baltic Sea ecosystem. Elsevier Science. B.V., Amsterdam.
  • [49]. Szefer P., Glasby G.P., Kusak A., Szefer K., Jankowska H., Wołowicz M. & Ali A.A (1998). Evaluation of anthropogenic influx of metallic pollutants into Puck Bay, southern Baltic. Appl. Geochem. 13: 293–304. ISSN: 0883-2927.
  • [50]. Szefer P., Glasby G.P., Pempkowiak J. & Kaliszan R. (1995). Extraction studies of heavy-metal pollutants in surficial sediments from the southern Baltic Sea of Poland, Chem. Geol. 120: 111–126. ISSN:0967-0653.
  • [51]. US EPA (1984). Wood preservative pesticides: Creosote, pentachlorophenol, inorganic arsenicals. Position document 4. Washington. DC: U.S. Environmental Protection Agency. Office of Pesticides and Toxic Substances.
  • [52]. Uścinowicz Sz. (1997). Basen Gdański. Przegląd Geologiczny 45(6): 589–594.
  • [53]. Uścinowicz Sz., Kramarska R. & Przeździecki R. (2008). Rozpoznanie i wizualizacja budowy geologicznej Zatoki Gdańskiej dla potrzeb gospodarowania zasobami naturalnymi. Centr. Arch. Geol. Państw. Inst. Geol., Oddz. Geologii Morza, Gdańsk.
  • [54]. Uścinowicz Sz., Narkiewicz W. & Sokołowski K. (2003). Mineralogical composition and granulometry. W: Contaminants in the Baltic Sea sediments (red. M. Perttilä). MERI Report Series of the Finnish Institute of Marine Research 50: 21–24.
  • [55]. Uścinowicz Sz., Szefer P. & Sokołowski K (2010). Pierwiastki śladowe w osadach Morza Bałtyckiego w: Fizyczne, biologiczne i chemiczne badania morskich osadów dennych (red. Bolałek J.). Gdańsk. Wydawnictwo Uniwersytetu Gdańskiego: 214–272 .
  • [56]. Verta M & Sunqvist C. (2007). Dioxin concentrations in sediments of the Baltic Sea - a survey of existing data. Chemosphere 67: 1762–1775. DOI: 10.1016/j.chemosphere.2006.05.125.
  • [57]. Vigano L., Arillo A., Buffagni A., Camusso M., Ciannarella R., Crosa G., Falugi C., Gallasi S., Guzzella L., Lopez A., Mingazzini M., Pagnotta R., Patrolecco L., Tartari G. & Valsecchi S. (2003). Quality assessment of bed sediments of the Po River (Italy), Water Research 37(3):501–518.
  • [58]. Wang L., Huang W., Shao X. & Lu X. (2003). An organic solvent-free microwave-assisted extraction of some priority pollutants of phenols in lake sediments. Anal Sci. 19: 1487–90. DOI: 10.1016/j.aca.2013.04.026.
  • [59]. Wentworth C.A. (1922). Scale of grade and class terms for clastic sediments. J. Geol., 30.
  • [60]. Zalewski M. (2011). Odpływ Wisłą związków azotu i fosforu na tle zmian produkcji pierwotnej rejonu Basenu Gdańskiego, praca doktorska
  • [61]. Zheng, M. H.; Zhang, B.; Bao, Z. C.; Yang, H.; Xu, X. B.(2000). Analysis of pentachlorophenol from water, sediments, and fish bile of Dongting lake in China. Bulletin of Environmental Contamination and Toxicology. 64(1): 16–19. DOI 10.1007/s001289910003.
  • [62]. Żurek J. (2002). Konwencja Sztokholmska w sprawie trwałych zanieczyszczeń organicznych. Konwencje międzynarodowe i uchwały organizacji międzynarodowych. Instytut Ochrony Środowiska.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23cfc1c9-933c-4481-b631-064348f50bd1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.