PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Wpływ wieku drzewostanów na ich charakterystyki spektralne i wartości wybranych wskaźników wegetacyjnych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Influence of trees age on spectral characteristics and selected vegetation indices
Języki publikacji
PL
Abstrakty
PL
Dane pozyskane w sposób zdalny (zobrazowania satelitarne, lotnicze, skaning laserowy) są źródłem dużej ilości informacji o otaczającym nas środowisku. Pozwalają na dokonywanie analiz, zarówno o charakterze jakościowym, jak i ilościowym. Umożliwiają również różnicowanie zjawisk w przestrzeni oraz czasie. Techniki teledetekcyjne już od kilkudziesięciu lat wykorzystywane są w badaniach środowiska. Jednym z przykładów wykorzystania informacji pozyskiwanej zdalnie jest teledetekcja obszarów leśnych. Obszarem badań autorów jest Puszcza Notecka, która rozciąga się w kierunku równoleżnikowym przez mezoregion Kotliny Gorzowskiej. Puszcza ta jest jednym z największych obszarów leśnych w Polsce i charakteryzuje się dużym udziałem gatunkowym drzewostanu sosnowego. Celem przeprowadzonych badań było określenie zróżnicowania charakterystyk spektralnych różnowiekowych drzewostanów sosnowych Puszczy Noteckiej oraz wpływu wieku tych drzewostanów na wielkość odbicia promieniowania elektromagnetycznego w różnych zakresach spektralnych i w różnych terminach sezonu wegetacyjnego. Kolejnym celem było określenie relacji pomiędzy wiekiem drzewostanów sosnowych a wartościami wybranych wskaźników wegetacji w tychże terminach. W obrębie zwartego kompleksu leśnego, jakim jest Puszcza Notecka, wyodrębniono 100 powierzchni badawczych. Kryterium wykorzystanym przy wyborze była jednorodność gatunkowa oraz wiekowa tych powierzchni. Każdy z wybranych obszarów porośnięty jest drzewostanem sosnowym o określonym wieku. Materiałem wykorzystanym do analiz są zobrazowania satelitarne wykonane przez sensor TM (ang. ThematicMapper) znajdujący się na satelicie Landsat 5, które charakteryzują się rozdzielczością przestrzenną na poziomie 30m. Zobrazowania pozyskane zostały z różnych momentów sezonu wegetacyjnego. Do analizy określono wartości odbicia promieniowania w sześciu zakresach spektralnych oraz wygenerowano charakterystyki spektralne dla każdej powierzchni testowej. Charakterystyki spektralne pozwoliły na określenie różnic pomiędzy drzewostanami o różnym wieku. Wartości odbić w poszczególnych zakresach promieniowania umożliwiły obliczenie trzech wskaźników wegetacji, które posłużyły dalszej analizie. W oparciu o metody statystyczne określono relacje pomiędzy wiekiem drzewostanów a wartościami poszczególnych wskaźników wegetacji oraz różnice pomiędzy terminami sezonu wegetacyjnego, w których wykonano zobrazowania satelitarne.
EN
Data obtained by remote sensing (satellite and airborne imaging, laser scanning) provide a lot of information about environment surrounding us that allows to conduct both quantitative and qualitative analyses. This information makes it also possible to differentiate phenomena in time and space. Remote sensing techniques have been already used for dozens of years in environmental research. A good example of the use of information obtained by remote sensing is remote sensing of forested areas. The area selected by the authors for research was Notecka forest, latitudinally spread in the mesoregion of Kotlina Gorzowska. The forest is one of the largest forest areas in Poland featured with high share of pine stands. The aim of the research was to determine the differences in spectral characteristics of pine stands at different age in Notecka forest and the impact of the age of these stands on the magnitude of reflection of electromagnetic radiation in different spectral ranges and at different terms of vegetation season. Another aim was to determine relationship between the age of pine stands and the value of selected vegetation indices in these terms of the vegetation season. Within such a dense forest complex as Notecka forest 100 test areas were selected. The selection criterion was uniform species and age of trees in these areas. Every test area selected was covered with pine stands at defined age. The materials used for analyses were satellite images made by ThematicMapper sensor located on Landsat 5 satellite. The images had spatial resolution on the level of 30m. The images were obtained from different terms of the vegetation season. For analysis, value of radiation reflection was determined for six spectral ranges and spectral characteristics were generated for each test area. Spectral characteristics allowed to determine differences between stands at different age. The value of reflections in individual ranges made it possible to calculate three vegetation indices which served for further analysis. Based on statistical methods, relationship between the age of stands and value of individual vegetation indices were determined as well as differences between the terms of the vegetation season when the satellite images were made.
Czasopismo
Rocznik
Strony
67--79
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
  • Uniwersytet im. Adama Mickiewicza w Poznaniu, Wydział Nauk Geograficznych i Geologicznych, Instytut Geoekologii i Geoinformacji, Zakład Geoekologii
autor
  • Uniwersytet im. Adama Mickiewicza w Poznaniu, Wydział Nauk Geograficznych i Geologicznych, Instytut Geoekologii i Geoinformacji, Zakład Geoekologii
Bibliografia
  • 1.Bannari A., Motin D., Bonn F., 1995: A Review of Vegetation Indices. Remote Sensing Reviews 13: 95-120.
  • 2.Colombo R., Meroni M., Marchesi A., Busetto L., Rossini M., Giardino C., Panigada C., 2008: Estimation of leaf and canopy water content in poplar plantations by means of hyperspectral indices and inverse modeling. Remote Sensing of Environment 112: 1820-1834.
  • 3.Daughtry C.S.T., Walthall C.L., Kim M.S., Brown de Colstoun E., McMurtrey J.E., 2000: Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sensing of Environment 74: 229–239.
  • 4.Ekstrand S., 1996: Landsat TM-based forest damage assessment: corrections for topographic effects. Photogrammetric Engineering and Remote Sensing 62: 151-161.
  • 5.Fleming M.D., Hoffer R.M., 1979: Machine Processing of Landsat MSS Data and DMA Topograhpic Data for Forest Cover Type Mapping. LARS Symposia 302: 377-390.
  • 6.Gitelson A., Merzlyak M.N., 1994: Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. Journal of Plant Physiology 143: 286–286.
  • 7.Kondracki J., 2009: Geografia regionalna Polski, Wydawnictwo Naukowe PWN, Warszawa.
  • 8.Kumar L., Schmidt K., Dury S., Skidmore A., 2002: Imaging Spectrometry and Vegetation Science. [W:] van der Meer F.D., de Jong S.M., Imaging Spectrometry. Basic Principles and Prospective Applications, Springer, Dordrecht.
  • 9.Kurczyński Z., 2006: Lotnicze i satelitarne obrazowanie Ziemi, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa.
  • 10.Lillesand T. M., Kiefer R.W., 1987: Remote sensing and image interpretation. Second edition. John Wiley & Sons.
  • 11.Linder S., 1972: Seasonal Variation of Pigments in Needles A Study of Scots Pine and Norway Spruce. Seedlings Grown under Different Nursery Conditions. Studia Forestalia Suecica 100: 5-37.
  • 12.Lorenc H., 2005: Atlas klimatu Polski, Instytut Meteorologii i Gospodarki Wodnej, Warszawa.
  • 13.Paris J., 2005: Tutorials about Remote Sensing Science and Geospatial Information Technologies. Dostęp 1.07.2013. http://www.microimages.com/sml/smlscripts/ParisScripts/FAQsbyJackB.pdf
  • 14.Rouse Jr. J.W., Haas R.H., Schell J.A., Deering D.W., 1973: Monitoring the vernal advancement and retrogradation (Green wave effect) of natural vegetation. Progress Report RSC: 1-112.
  • 15.Virk R., King D., 2006: Comparison of Techniques for Forest Change Mapping Using Landsat Data in Karnataka, India. Geocarto International 21(4): 49-57.
  • 16.Wężyk P., Wertz B., Waloszek A., 2003: Skaner hiperspektralny AISA (Airborne Imaging Spectrometer for Applications) jako narzędzie pozyskiwania informacji o ekosystemie leśnym. Archiwum Fotogrametrii, Kartografii i Teledetekcji 13B: 485-496.
  • 17.Zheng D., Rademacher J., Chen J., Crow T., Bresee M., LeMoine J., Ryua S-R., 2004: Estimating aboveground biomass using Landsat 7 ETM+ data across amanaged landscape in northern Wisconsin, USA. Remote Sensing of Environment 93: 402-411.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23cf30af-cceb-4750-85a6-09777af26770
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.