Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The high pressure die casting (HPDC) is a technique that allows us to produce parts for various sectors of industry. It has a great application in such sectors as automotive, energy, medicine, as the HPDC allows us to produce parts very fast and very cheaply. The HPDC casting quality depends on many parameters. The parameters among others, are cast alloy alloy metallurgy, filling system design, casting technology elements geometry and orientation, as well as, machine operation settings. In the article, different plunger motion schemes of the HPDC machine were taken into account. Analyses lead to learning about plunger motion influence on the casting porosity and solidification process run. Numerical experiments were run with the use of MAGMASoft® simulation software. Experiments were performed for industrial casting of water pump for automotive. Main parameter taken into account was maximal velocity of the plunger in the second phase. The analysis covered porosity distribution, feeding time through the gate, temperature field during whole process, solidification time. Cooling curves of the casting in chosen points were also analysed. Obtained results allow us to formulate conclusions that connect plunger motion scheme, gate solidification time and the casting wall thickness on the solidification rate and porosity of the casting.
Rocznik
Tom
Strony
art. no. e147339
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- AGH University of Krakow, Faculty of Foundry Engineering, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Krakow, Faculty of Foundry Engineering, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Krakow, Faculty of Foundry Engineering, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- Frech Poland Sp. z o.o., Przedmość, Główna 8, 46-320 Praszka, Poland
Bibliografia
- [1] M. Łuszczak and R. Dańko, “The state of art of production of automotive structural die casted elemenets,” Arch. Foundry Eng., vol.13, no. 3–Special Issue, 2013.
- [2] S. Devaraj, G. Veeresh, and I. Siddhalingeshwar, “Review on state of the art and techniques in high pressure die-casting (HPDC),” Int. J. Sci. Eng. Res., vol. 9, pp. 60–68, 2018.
- [3] C. Ammen, Metalcasting. McGraw Hill Professional, 2000.
- [4] H. Cao, Z. Luo, C. Wang, J. Wang, T. Hu, L. Xiao, and J. Che, “The stress concentration mechanism of pores affecting the tensile properties in vacuum die casting metals,” Materials, vol. 13, no. 13, p. 3019, 2020, doi: 10.3390/ma13133019.
- [5] E. Fiorese, D. Richiedei, and F. Bonollo, “Improving the quality of die castings through optimal plunger motion planning: analytical computation and experimental validation,” Int. J. Adv. Manuf. Technol., vol. 88, no. 5, pp. 1475–1484, Feb 2017, doi: 10.1007/s00170-016-8875-y.
- [6] R. Dańko and W. Kowalczyk, “New trends in cold-chamber die casting machine design.” China Foundry, vol. 12, no. 4, pp. 305–309, 2015.
- [7] A.R. Adamane, L. Arnberg, E. Fiorese, G. Timelli, and F. Bonollo, “Influence of injection parameters on the porosity and tensile properties of high-pressure die cast Al-Si alloys: A review,” Int. J. Met., vol. 9, pp. 43–53, 2015, doi: 10.1007/BF03355601.
- [8] W. Kowalczyk, R. Dańko, M. Górny, M. Kawalec, and A. Burbelko, “Influence of high-pressure die casting parameters on the cooling rate and the structure of EN-AC 46000 alloy,” Materials, vol. 15, no. 16, p. 5702, 2022, doi: 10.3390/ma15165702.
- [9] Q. Han and J. Zhang, “Fluidity of alloys under high-pressure die casting conditions: Flow-choking mechanisms,” Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., vol. 51, no. 4, pp. 1795–1804, Aug 2020, doi: 10.1007/s11663-020-01858-0.
- [10] J. Zheng, Q. Wang, P. Zhao, and C. Wu, “Optimization of high-pressure die-casting process parameters using artificial neural network,” Int. J. Adv. Manuf. Technol., vol. 44, no. 7, pp. 667–674, Oct 2009, doi: 10.1007/s00170-008-1886-6.
- [11] F. Bonollo, N. Gramegna, and G. Timelli, “High-pressure die-casting: Contradictions and challenges,” JOM, vol. 67, no. 5, pp. 901–908, May 2015, doi: 10.1007/s11837-015-1333-8.
- [12] L. Wang, P. Turnley, and G. Savage, “Gas content in high pressure die castings,” J. Mater. Process. Technol., vol. 211, no. 9, pp. 1510–1515, 2011, doi: 10.1016/j.jmatprotec.2011.03.024.
- [13] MAGMASoft®, MAGMASoft® manual and database version 5.5.1.5, Aahen, Germany, 2023. [Online]. Available: https://www.magmasoft.de/en/
- [14] I. Flow Science, FLOW-3D, Version 2023R1, Santa Fe, NM, USA, 2023. [Online]. Available: https://www.flow3d.com/
- [15] K. Dou, E. Lordan, Y. Zhang, A. Jacot, and Z. Fan, “A complete computer aided engineering (cae) modelling and optimization of high pressure die casting (hpdc) process,” J. Manuf. Process., vol. 60, pp. 435–446, 2020, doi: 10.1016/j.jmapro.2020.10.062.
- [16] H.-J. Kwon and H.-K. Kwon, “Computer aided engineering (cae) simulation for the design optimization of gate system on high pressure die casting (hpdc) process,” Robot. Comput.-Integr. Manuf., vol. 55, pp. 147–153, 2019, extended Papers Selected from FAIM2016.
- [17] A.R. Jadhav, D.P. Hujare, and P.P. Hujare, “Design and optimization of gating system, modification of cooling system position and flow simulation for cold chamber high pressure die casting machine,” Mater. Today-Proc., vol. 46, pp. 7175–7181, 2021, 3rd International Conference on Materials, Manufacturing and Modelling.
- [18] T. Wang, J. Huang, H. Fu, K. Yu, and S. Yao, “Influence of process parameters on filling and feeding capacity during high-pressure die-casting process,” Appl. Sci., vol. 12, no. 9, p. 4757, 2022, doi: 10.3390/app12094757.
- [19] M.E. Mehtedi, T. Mancia, P. Buonadonna, L. Guzzini, E. Santini, and A. Forcellese, “Design optimization of gate system on high pressure die casting of AlSi13Fe alloy by means of finite element simulations,” 2020, vol. 88, pp. 509–514, doi: 10.1016/j.procir.2020.05.088.
- [20] J. Martínez-Pastor, J.J. Hernández-Ortega, and R. Zamora, “A decision support system (DSS) for the prediction and selection of optimum operational parameters in pressure die-casting processes,” Materials, vol. 15, no. 15, p. 5309, 2022, doi: 10.3390/ma15155309.
- [21] F. Faura, J. López, and J. Hernández, “On the optimum plunger acceleration law in the slow shot phase of pressure die casting machines,” Int. J. Mach. Tools Manuf., vol. 41, no. 2, pp. 173–191, 2001, doi: 10.1016/S0890-6955(00)00079-1.
- [22] J. Lo´pez, F. Faura, J. Herna´ndez, and P. Go´mez, “On the Critical Plunger Speed and Three-Dimensional Effects in High-Pressure Die Casting Injection Chambers ,” J. Manuf. Sci. Eng.-Trans. ASME, vol. 125, no. 3, pp. 529–537, 07 2003, doi: 10.1115/1.1580525.
- [23] F. Grosselle, G. Timelli, F. Bonollo, and E. Della Corte, “Correlation between microstructure and mechanical properties of Al-Si cast alloys,” Metall. Ital.
- [24] J.G. Kaufman and E.L. Rooy, Aluminum alloy castings: properties, processes, and applications. Asm International, 2004.
- [25] S.G. Shabestari and F. Shahri, “Influence of modification, solidification conditions and heat treatment on the microstructure and mechanical properties of A356 aluminum alloy,” J. Mater. Sci., vol. 39, no. 6, pp. 2023–2032, Mar 2004, doi: 10.1023/B:JMSC.0000017764.20609.0d.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23c83fd0-8393-4e0d-84ab-cda39f2fd502