Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A waterproof or water-resistant sandwich structure which consists of housing chassis and a gasket requires that gasket contact pressure, which depends on bolt axial force, is greater than the design minimum pressure on the entire circumference. However, it is also necessary that gasket contact pressure is smaller than the maximum permissible gasket pressure. If the maximum stress in chassis can be calculated from bolt axial force, gasket specifications and chassis stiffness, it is helpful for a design of such waterproof structures. In this study, chassis have been regarded as Bernoulli-Euler beams, and two simple numerical methods have thus been derived. Numerical results using the proposed method are sufficiently converged even in case that the number of partitions is about 10.
Rocznik
Tom
Strony
31--44
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Maintenance Department, Kansai Depot, Japan Ground Self Defense Force Gokasho, Uji-City, Kyoto 611-0011, Japan
Bibliografia
- [1] Butterfield, R. (1979). New concepts illustrated by old problems. Developments in Boundary Element Methods, Vol. 1. London: Applied Science Publishers Ltd., 1-20.
- [2] Hoff, N.J., & Mautner, S.E. (1948). Bending and buckling of sandwich beams. Journal of the Aeronautical Sciences, 15(12), 707-720.
- [3] Kenmochi, K. (1978). Deflection of sandwich beams. Journal of the Japan Society for Composite Materials, 4(1), 39-44 (in Japanese).
- [4] Kenmochi, K., & Uemura, M. (1978). Discussion of four-point bending stress in sandwich composite beam by multi-layer built-up theory. Journal of the Society of Materials Science, Japan, 27(299), 728-734 (in Japanese).
- [5] Sato, K., Shikanai, G., & Tainaka, T. (1986). Damping of flexural vibration of viscoelastic sandwich beam subjected to axial force. Bulletin of JSME, 29(253), 2204-2210.
- [6] Galucio, A.C., De ̈u, J.-F., & Ohayon, R. (2004). Finite element formulation of viscoelastic sandwich beams using fractional derivative operators. Computational Mechanics, 33(4), 282-291.
- [7] Hassinen, P., & Martikainen, L. (1994). Analysis and design of continuous sandwich beams. Proc. of 12th International Specialty Conference on Cold-Formed Steel Structures, 523-538.
- [8] Mirzabeigy, A., & Madoliat, R. (2019). A note on free vibration of a double-beam system with nonlinear elastic inner layer. Journal of Applied and Computational Mechanics, 5(1), 174-180.
- [9] Zhang, J., Qin, Q., Xiang, C., Wang, Z., & Wang, T.J. (2016). A theoretical study of low-velocity impact of geometrically asymmetric sandwich beams. International Journal of Impact Engineering, 96, 35-49.
- [10] Zhang, J., Qin, Q., Xiang, C., & Wang, T.J. (2016). Dynamic response of slender multilayer sandwich beams with metal foam cores subjected to low-velocity impact. Composite Structures, 153, 614-623.
- [11] Zhang, J., Ye, Y., Qin, Q., & Wang, T. (2018). Low-velocity impact of sandwich beams with fibre-metal laminate face-sheets. Composites Science and Technology, 168, 152-159.
- [12] Zhang, J., Qin, Q., & Wang, T.J. (2013). Compressive strengths and dynamic response of corrugated metal sandwich plates with unfilled and foam-filled sinusoidal plate cores. Acta Mechanica, 224, 759-775.
- [13] Zhang, J., Liu, K., Ye, Y., & Qin, Q. (2019). Low-velocity impact of rectangular multilayer sandwich plates. Thin-Walled Structures, 141, 308-318.
- [14] Zhang, J., Qin, Q., Zhang, J., Yuan, H., Du, J., & Li, H. (2021). Low-velocity impact on square sandwich plates with fibre-metal laminate face-sheets: Analytical and numerical research. Composite Structures, 259, 113461.
- [15] Zhang, J., Zhu, Y., Li, K., Yuan, H., Du, J., & Qin, Q. (2022). Dynamic response of sand- wich plates with GLARE face-sheets and honeycomb core under metal foam projectile impact: Experimental and numerical investigations. International Journal of Impact Engineering, 164, 104201.
- [16] Zhang, J., Ye, Y., Zhu, Y., Yuan, H., Qin, Q., & Wang, T.J. (2020). On axial splitting and curling behaviour of circular sandwich metal tubes with metal foam core. International Journal of Solids and Structures, 202, 111-125.
- [17] Mendonc ̧a, A.V., & Nascimento Jr, P.C. (2013). Boundary element formulation for the classical laminated beam theory. 22nd International Congress of Mechanical Engineering, 2256-2262.
- [18] Carrer, J.A.M., Mansur, W.J., Scuciato, R.F., & Fleischfresser, S.A. (2014). Analysis of Euler-Bernoulli and Timoshenko beams by the boundary element method. Proc. 10th World Congr. Comput. Mech., 2333-2349.
- [19] Tsiatas, G.C., Siokas, A.G., & Sapountzakis, E.J. (2018). A layered boundary element nonlinear analysis of beams. Frontiers in Built Environment, 4, 52.
- [20] Timoshenko, S. (1955). Strength of Materials, Part 1: Elementary Theory and Problems, 3rd ed. New York: Van Nostrand, 137-175.
- [21] Prescott, J. (1924). Applied Elasticity. London: Longmans, Green and Co., 47-78.
- [22] Dym, C.L., & Shames, I.H. (1973). Solid Mechanics: A Variational Approach. New York: McGraw-Hill, 174-241.
- [23] Natori, M. (1990). Numerical Analysis and its Applications. Tokyo: Corona Publishing Co., Ltd., 6-11 (in Japanese).
- [24] Okumura, H. (2018). Standard Dictionary of Algorithms in C. Rev. ed. Tokyo: Gijutsu-Hyohron Co., Ltd., 128 (in Japanese).
- [25] Timoshenko, S. (1956). Strength of Materials, Part 2: Advanced Theory and Problems, 3rd ed. New York: Van Nostrand, 1-25.
- [26] Kimura, K., Okamoto, M., & Uemura, K. (2007). Bending of uniformly loaded circular plates supported by a tapered cross stiffener. Journal of Strain Analysis for Engineering Design, 42(8), 581-588.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23c7b85d-c54b-4e44-b55c-cee039ba7cbc