PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monitoring and remediation technologies of organochlorine pesticides in drainage water

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study was carried out to monitor the presence of organochlorine in drainage water in Kafr-El-Sheikh Governorate, Egypt. Furthermore, to evaluate the efficiencies of different remediation techniques (advanced oxidation processes [AOPs] and bioremediation) for removing the most frequently detected compound (lindane) in drainage water. The results showed the presence of several organochlorine pesticides in all sampling sites. Lindane was detected with high frequency relative to other detected organochlorine in drainage water. Nano photo-Fenton like reagent was the most effective treatment for lindane removal in drainage water. Bioremediation of lindane by effective microorganisms (EMs) removed 100% of the lindane initial concentration. There is no remaining toxicity in lindane contaminated-water after remediation on treated rats relative to control with respect to histopathological changes in liver and kidney. Advanced oxidation processes especially with nanomaterials and bioremediation using effective microorganisms can be regarded as safe and effective remediation technologies of lindane in water.
Słowa kluczowe
Rocznik
Strony
115--122
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr., wz.
Twórcy
autor
  • Kafr El-Sheikh University, Pesticides Chemistry and Toxicology Department, Faculty of Agriculture, 33516, Kafr El-Sheikh, Egypt
autor
  • Kafr El-Sheikh University, Pesticides Chemistry and Toxicology Department, Faculty of Agriculture, 33516, Kafr El-Sheikh, Egypt
autor
  • Kafr El-Sheikh University, Soil Department, Faculty of Agriculture, 33516, Kafr El-Sheikh, Egypt
Bibliografia
  • 1. Tomkins, B.A., Merriweather, R., Jenkins, R.A. & Bayne, C.K. (1992). J. Assoc. Off. Anal. Chem. Int. 75, 1091-1099.
  • 2. Colborn, T., Dumanoski, D. &Myers, J.P. (1996). Our Stolen Future. Dutton, NY, SA.
  • 3. Li, J., Zhang, G., Guo, L.L., Xu, W.H., Li, X., Dlee, C.S.L., Ding, A.J. & Wanf, T. (2007). Organochlorine pesticides in the atmosphere o Guangzhou and Hong Kong: regional sources and long-range atmospheric transport. Atmospheric Environ. 41, 3889-3903. DOI: 10.1016/j.atmosenv.2006.12.052.
  • 4. Benitez, F.J., Acero, J.L. & Real, F.J. (2002). Degradation of carbofuran by using ozone, UV radiation and advanced oxidation processes. J. Hazard. Mat. 89, 51-65.
  • 5. Derbalah, A.S., Nakatani, N. & Sakugawa, H. (2004). Photocatalytic removal of fenitrothion in pure and natural waters by photo-Fenton reaction. Chemosphere 57, 635-644. DOI: 10.1016/j.
  • 6. Evgenidou, E., Konstantinou, I., Fytianos, K. & Poulios, I. (2007). Oxidation of tow organophosphorus insecticides by the photo-assisted Fenton reaction. Wat. Res. 41, 2015-2027. DOI: 10.1016/j.watres.2007.01.027.
  • 7. Derbalah, A.S. (2009). Chemical remediation of carbofuran insecticide in aquatic system by advanced oxidation processes. J. Agric. Res. Kafr Elsheikh Univ. 35 (1), 308-327.
  • 8. Derbalah, A.S.H. & Belal, E.B. (2008). Biodegradation kinetics of cymoxanil in Aquatic system. Chem. Ecol. 3, 169-180. DOI: 10.1080/02757540802032173.
  • 9. Sangakkara, U.R. (2002). The Technology of Effective Microorganisms-Case Studies of Application’ Royal Agricultural College, Cirencester, UK Research.
  • 10. EM Technology (1998). Effective Microorganisms for a Sustainable Agriculture and Environment. From Link http://emtech.org/prod01.htmm
  • 11. Xu, X., Yang, H., Li, O.,Yang, B., Frank, X.W. & Lee, S.C. (2007). Residues of organochlorine pesticides in near shore waters of Lai Zhou Bay and Jiao Zhou Bay, Shandong Peninsula, China. Chemosphere 68, 126-139. DOI: 10.1016/j. chemosphere.2006.12.021.
  • 12. Papadakis, E.N., Vryzas, Z. & Papadopoulou-Mourkidou, E. (2006). Rapid method for the determination of 16 organochlorine pesticides in sesame seeds by microwave-assisted extraction and analysis of extracts by gas chromatography-mass spectrometry. J. Chromat. A, 1127, 6-11.
  • 13. Ezemonye, L.I., Ikpesu, T.O. & Tongo, I. (2008). Distribution of lindane in water, sediment, and fish from the Warri river of the Niger delta, Nigeria. Arh. High Rad. Toksikol. 59, 261-270. DOI: 10.2478/10004-1254-59-2008-1906.
  • 14. Abdel Megeed, A.A. & Elnakeeb, A. (2008). Bioremediation of dimethoate by effective microorganisms in contaminated water. Terrestrial Aquat. Environ. Toxicol. 2, 1-4.
  • 15. Derbalah, A.S., Massoud, A.H. & Belal, E.B. (2008). Biodegrability of famoxadone by various microbial isolates in aquatic system. Land Contamination & Reclama 16 (1), 13-23. DOI: 10.2462/09670513.876.
  • 16. Bancroft, J.D. & Stevens, A. (1996). Theory and Practiceof Histological Techniques. (4th ed.). Churchill Livingstone. Edinburg, London, Melbourne and New York.
  • 17. Abd-Allah, S.W. & Hesham, M.G. (2003). Monitoring of pesticide residues in different sources of drinking water in some rural areas. Alex. J. Agric. Res. 48 (3), 187-199.
  • 18. Ashry, M.A., Bayoumi, O.C., El-Fakharany, I.I., Derbalah, A.S. & Ismail, A.A. (2006). Monitoring and removal of pesticidesresidues in drinking water collected from Kafr El-Sheikhgovernorate, Egypt. J. Agric. Res. Tanta Univ. 32 (3), 691-704.
  • 19. El-Sebae, A.H., Abou-Zeid, M.M. & Saleh, M.A. (1993). Status and environmental impact of toxaphene in the Third World a case study of African agriculture. Chemosphere 27, 2063-2072.
  • 20. Barakat, A.O. (2003). Persistent organic pollutants in smoke particles emitted during open burning of municipal solid wastes. Bull. Environ. Contamin. Toxicol. 70, 174-181. DOI: 10.1007/s00128-002-0172-9.
  • 21. He, F., Zhao, D., Liu, J. & Roberts, C.B. (2007). Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Indian Engineer. Chem. Res. 46, 29-34. DOI: 10.1021/ie0610896.
  • 22. He, F. & Zhao, D. (2005). Preparation and characteriza- -for degradation of chlorinated hydrocarbons in water. Environ. Sci. Technol. 39, 3314-3320. DOI:10.1021/es048743y.
  • 23. Catastini, C., Sarakha, M., Mailhot, G. & Bolte, M. (2002). Iron (III) Aquacomplesxes as effective photocatalysis for the degradation of pesticides in homogenous aqueous solutions. Sci. Tot. Environ. 298, 219-228.
  • 24. El-Morsi, T.M., Emara, M.M., Abd El Bary, H.M.H., Abd-El-Aziz, A. & Friesen K.J. (2002). Homogeneous degradation of 1,2<10 tetrachlorodecane in aqueous solutions using hydrogen peroxide, iron and UV light. Chemosphere 47, 343-348. DOI: 10.1016/S0045-6535(01)00305-8.
  • 25. Wang, Q. & Lemely, A.T. (2002). Oxidation of diazinon by anodic Fenton treatment. Wat. Res. 36, 3237-3244. DOI: 10.1016/S0043-1354(02)00041-6.
  • 26. Pare, B.P., Singh, S. & Jonnalagadda, B. (2008). Visible light induced heterogeneous advanced oxidation process to degrade pararosanilin dye in aqueous suspension of ZnO. Indian J. Chem. 4, 830-835.
  • 27. Wang, H., Xie, C., Zhang, W., Cai, Z., Cai, S., Yang, Z. & Gui, Y. (2007). Comparison of dye degradation efficiency using ZnO powders with various size scales. J. Hazard. Mat.141, 645-652. DOI: org/10.1016/j.jhazmat.2006.07.021.
  • 28. Valdés-Solís, T.P., Valle-Vigón, P., Álvarez, S., Marbán, G. & Fuertes, A.B. (2007 a). Encapsulation of nanosized catalysts in the hollow core of a mesoporous carbon capsule. J. Catal. 251, 239-243. DOI: 10.1016/j.jcat.2007.07.006.
  • 29. Valdés-Solís, T.P., Valle-Vigón, P., Álvarez, S., Marbán, G. & Fuertes, A.B. (2007 b). Manganese ferrite nanoparticles synthesized through a nanocasting route as a highly active Fenton catalyst. Catal. Commun. 8, 2037-2042. DOI: 10.1016/j. catcom.2007.03.030.
  • 30. Lines, M.G. (2008). Nanomaterials for practical functional uses. J. Alloys Compd. 449, 242-245. DOI: 10.1016/j.
  • 31. Mamalis, A.G. (2007). Recent advances in nanotechnology. J. Mat. Process. Technol. 181, 52-58. DOI:org/10.1016/j. jmatprotec.2006.03.052.
  • 32. Miyazaki, K. & Islam, N. (2007). Nanotechnology systems of innovation - an analysis of industry and academia research activities. Technovation 27, 661-675. DOI: 10.1016/j. technovation.2007.05.009.
  • 33. Yuan, G. & Theng, B.K.G. (2008). Nanopaticles in the soil environment. Elements 4, 395-399. DOI:10.2113/gs
  • 34. Bell, A.T. (2003). The impact of nanoscience on heterogeneous catalysis. Sci. 299, 1688-1691. DOI: 10.1126/ science.1083671.
  • 35. Feng, J., Hu, X. & Yue, P.L. (2004 a). Novel bentonite clay-based Fe-nanocomposite as a heterogeneous catalyst for photo-Fenton discoloration and mineralization of Orange II. Environ. Sci. Technol. 38, 269-275. DOI: 10.1021/es034515c.
  • 36. Feng, J., Hu, X. & Yue, P.L. (2004 b). Discoloration and mineralization of Orange II using different heterogeneous catalysts containing Fe: a comparative study. Environ. Sci. Technol. 38, 5773-5778. DOI: 10.1021/es049811j.
  • 37. Zelmanov, G., Semiat, R. (2008). Iron(3) oxide-based nanoparticles as catalysts in advanced organic aqueous oxidation. Wat. Res. 42, 492-498. DOI: 10.1016/j.watres.2007.07.045.\
  • 38. Nurmi, J., Tratnyek, P.G., Sarathy, V., Baer, D.R., Amonette, J.E., Pecher, K., Wang, C., Linehan, J.C., Matson, D.W., Penn, R.L. & Driessen, M.D. (2005). Characterization and properties of metallic iron nanoparticle: spectroscopy, electrochemistry, and kinetics. Environ. Sci. Technol. 39, 1221-1230. DOI: 10.1021/es049190u.
  • 39. Liu, W.T. (2006). Nanoparticles and their biological and environmental applications. J. Biosci. Bioeng. 102, 1-7. DOI: 10.1263/jbb.102.1
  • 40. Higa, T. (1995). What is EM Technology. College of Agriculture, University of Ryukyus, Okinawa, Japan.
  • 41. EM Trading (2000). Effective Microorganisms (EM) from Sustainable Community Development. From EM Technology Product Link http://www.emtrading.com.html
  • 42. Diver, S. (2001). Nature Farming and Effective Microorganisms’, Rhizosphere II: Publications. from Steve Diver Link http://ncatark.uark.edu/~steved/Nature-Farm-EM.html
  • 43. Quik, J.T.K., Velzeboer, I., Wouterse, M., Koelmans, A.A. & Van de Meent, D. (2014). Heteroaggregation and Sedimentation Rates for Nanomaterials in Natural Waters. Wat. Res. 48, 269-279. DOI: 10.1016/j.watres.2013.09.036.
  • 44. El-Safty, S.A., Hoa, N.D. & Shenashen M.A. (2012). Topical Developments of Nanoporous Membrane Filters for Ultrafine Noble Metal Nanoparticles. Eur. J. Inorg. Chem. 5439-5450. DOI: 10.1002/ejic.201200629.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23c5e213-df5a-4d86-8ec0-0037e302809f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.