PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of sound absorption performance of acoustic absorbers made of fibrous materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Absorbing properties of multi-layer acoustic absorbers were modeled using the impedance translation theorem and the Garai and Pompoli empirical model, which enables a determination of the characteristic impedance and propagation constant of fibrous sound-absorbing materials. The theoretical model was applied to the computational study of performance of single-layer acoustic absorber backed by a hard wall and the absorber consisting of one layer of absorbing material and an air gap between the rear of the material and a hard back wall. Simulation results have shown that a high thickness of absorbing material may cause wavy changes in the frequency relationship of the normal and random incidence absorption coefficients. It was also found that this effect is particularly noticeable for acoustic absorbers with a large thickness of air gap between the absorbing material and a hard back wall.
Rocznik
Strony
art. no. 2022205
Opis fizyczny
Bibliogr. 8 poz., 1 il. kolor., wykr.
Twórcy
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw
Bibliografia
  • 1. M. Meissner; Acoustics of small rectangular rooms: Analytical and numerical determination of reverberation parameters; Appl. Acoust. 2017, 120, 111-119. DOI: 10.1016/j.apacoust.2017.01.020
  • 2. M. Meissner, T.G. Zieliński; Low-frequency prediction of steady-state room response for different configurations of designed absorbing materials on room walls; Proceedings of 29th International Conference on Noise and Vibration Engineering (ISMA 2020) and 8th International Conference on Uncertainty in Structural Dynamics (USD2020), Leuven, Belgium, September 7-9, 2020, 463-477.
  • 3. M. Meissner; Application of high-density sound absorbing materials for improving low-frequency spectral flatness in room response; Vibrations in Physical Systems 2021, 32(1), 2021111. DOI: 10.21008/j.0860-6897.2021.1.11
  • 4. T.G. Zieliński; Microstructure representations for sound absorbing fibrous media: 3D and 2D multiscale modelling and experiments; J. Sound Vib. 2017, 409, 112-130. DOI: 10.1016/j.jsv.2017.07.047
  • 5. M. Garai, F. Pompoli; A simple empirical model of polyester fibre materials for acoustical applications; Appl. Acoust. 2005, 66(12), 1383-1398. DOI: 10.1016/j.apacoust.2005.04.008
  • 6. J. Allard, N. Atalla; Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, 2nd ed.; John Wiley & Sons, Ltd.: West Sussex, United Kingdom, 2009.
  • 7. H. Kuttruff; Room Acoustics, 5th ed.; Spon Press: Abingdon, United Kingdom, 2009.
  • 8. M. Delany, E. Bazley; Acoustical properties of fibrous absorbent materials; Appl. Acoust. 1970, 3(2), 105-116. DOI: 10.1016/0003-682X(70)90031-9
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23c43d94-1fe4-416c-b1e4-3c2ef9843879
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.