PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of temperature on the percolation threshold in two-dimensional polymer systems

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The structure of a two-dimensional film formed by strongly adsorbed polymer chains was studied by means of Monte Carlo simulations. We investigated the percolation in systems consisting of flexible polymer chains. A coarse-grained polymer chains representation was assumed and polymer chains were represented by linear sequences of lattice beads. The positions of these beads were restricted to vertices of a two-dimensional square lattice. Properties of the model system were determined by means of Monte Carlo simulations with a refined Verdier-Stockmayer sampling algorithm. Percolation thresholds macromolecules were determined. The methodology concerning the determination of the percolation thresholds for an infinite chain system was discussed. The influence of the chain length and the temperature on the percolation was discussed. It was shown that the introduction of long-range interactions changes the behavior of the percolation threshold dramatically. The percolation threshold initially decreases with the chain length while for longer ones it is stable.
Twórcy
autor
  • Department of Chemistry University of Warsaw Pasteura 1, 02-093 Warsaw, Poland
Bibliografia
  • [1] D. Stauffer, A. Aharony, Introduction to Percolation Theory, Taylor and Francis, London (1994).
  • [2] J.W. Evans, Random and Cooperative Sequential Adsorption, Rev. Mod. Phys. 65, 1281–1329 (1993).
  • [3] J. Talbot, G. Tarjus, P.R. Van Tassel, P. Viot, From Car Parking to Protein Adsorption. An Overview of Sequential Adsorption Processes, Colloid. Surface A 165, 287–324 (2000).
  • [4] J.-S. Wang, Series Expansion and Computer Simulation Studies of Random Sequential Adsorption, Colloid. Surface A 165, 325–343 (2000).
  • [5] P. Adamczyk, P. Polanowski, A. Sikorski, A Simple Model of Stiff and Flexible Polymer Chain Adsorption: The Influence of The Internal Chain Architecture, J. Chem. Phys. 131, 234901 (2009).
  • [6] M. Pawłowska, S. Żerko, A. Sikorski, Percolation in Two-Dimensional Flexible Chains Systems, J. Chem. Phys. 136, 046101 (2012).
  • [7] R.M. Ziff, R.D. Vigil, Kinetics and Fractal Properties of the Random Sequential Adsorption of Line Segments, J. Phys. A: Math. Gen. 23, 5103–5108 (1990).
  • [8] N. Vandewalle, S. Galam, M. Kramer, A New Universality for Random Sequential Deposition of Needles, Eur. Phys. J. B 14, 407–410 (2000).
  • [9] G. Kondrat, A. Pekalski, Percolation and Jamming in Random Bond Deposition, Phys. Rev. E 63, 051108 (2001).
  • [10] E.J. Garboczi, K.A. Snyder, J.F. Douglas, M.F. Thorpe, Geometrical Percolation Threshold of Overlapping Ellipsoids, Phys. Rev. E 52, 819–828 (1995).
  • [11] Y.B. Yi, A.M. Sastry, Analytical Approximation of the Percolation Threshold for Overlapping Ellipsoids of Revolution, Proc. Royal. Soc. Lond. A 460, 2353–2380 (2004).
  • [12] N.V. Vygornitskii, L.N. Lisetskii, N.I. Lebovka, Percolation in the Model of Random Successive Adhesion of Anisotropic Particles, Colloid. J. 69, 557–562 (2007).
  • [13] G. Kondrat, Influence of Temperature on Percolation in a Simple Model of Flexible Chains Adsorption, J. Chem. Phys. 117, 6662–6666 (2002).
  • [14] P. Adamczyk, P. Romiszowski, A. Sikorski, A Simple Model of Stiff and Flexible Polymer Chain Adsorption: The Influence of The Internal Chain Architecture, J. Chem. Phys. 128, 154911 (2008).
  • [15] I. Loncarević, L. Budinski-Petković, S.B. Vrhovac, Simulation Study of Random Sequential Adsorption of Mixtures on a Triangular Lattice, Eur. Phys. J. E 24, 19–26 (2007).
  • [16] V. Cornette, A.J. Ramirez-Pastor, F. Nieto, Percolation of Polyatomic Species on a Square Lattice, Eur. Phys. J. B 36, 391–399 (2003).
  • [17] J.L. Becklehimer, R.B. Pandey, Percolation of Chains and Jamming Coverage in Two Dimensions by Computer Simulation, J. Stat. Phys. 75, 765–771 (1994).
  • [18] S.J. Wang, R.B. Pandey, Kinetics and Jamming Coverage in a Random Sequential Adsorption of Polymer Chains, Phys. Rev. Lett. 77, 1773–1776 (1996).
  • [19] V. Cornette, A.J. Ramirez-Pastor, F. Nieto, Dependence of the Percolation Threshold on the Size of the Percolating Species, Physica A 327, 71–75 (2003).
  • [20] B.J. Sung, A. Yethiraj, Structure of Void Space in Polymer Solutions, Phys. Rev. E 81, 031801 (2010).
  • [21] M. Cieśla, Continuum Random Sequential Adsorption of Polymer on a Flat and Homogeneous Surface, Phys. Rev. E 87, 052401 (2013).
  • [22] E. Eisenriegler, Polymers Near Surfaces, World Scientific, Singapore (1993).
  • [23] L.-C. Jai, P.-Y. Lai, Kinetics and Structure of Irreversibly Adsorbed Polymer Layers, J. Chem. Phys. 105, 11319–11325 (1996).
  • [24] A. Sikorski, Computer Simulations of Adsorbed Polymer Chains with a Different Molecular Architecture, Macromol. Theory Simul. 10, 38–45 (2001).
  • [25] M.K. Kosmas, Ideal Polymer Chains of Various Architectures at a Surface, Macromolecules 23, 2061–2065 (1990).
  • [26] J.F. Joanny, A. Johner, Adsorption of Polymers with Various Architectures: Mean Field Theory, J. Phys. II (France) 6, 511–527 (1996).
  • [27] S. Stepanow, Adsorption of a Semiflexible Polymer onto Interfaces and Surfaces, J. Chem. Phys. 115, 1565–1568 (2001).
  • [28] X. Wang, A.P. Chatterjee, Connectedness Percolation in Athermal Mixtures of Flexible and Rigid Macromolecules. Analytic Theory, J. Chem. Phys. 118, 10787–10793 (2003).
  • [29] P. Polanowski, J.K. Jeszka, Microphase Separation in Two-Dimensional Athermal Polymer Solutions on a Triangular Lattice, Langmuir 23, 8678–8680 (2007).
  • [30] P. Polanowski, J.K. Jeszka, A. Sikorski, Monte-Carlo Simulations of Two-Dimensional Polymer Solutions with Explicit Solvent Treatment, Comput. Methods Sci. Technol. 23, 305–316 (2017).
  • [31] A. Sikorski, Monte Carlo Study of Dynamics of Star-Branched Polymers, Macromol. Theory Simul. 2, 309–318 (1993).
  • [32] K. Rolińska, A. Sikorski, Adsorption of Linear and Cyclic Multiblock Copolymers from Selective Solvent. A Monte Carlo Study, Macromol. Theory Simul. 29, 2000053 (2020).
  • [33] M.E.J. Newman, R.M. Ziff, Fast Monte-Carlo Algorithm for Site and Bond Percolation, Phys. Rev. E 64, 016706 (2001).
  • [34] Y.Y. Tarasevich, V.A. Cherkasova, Dimer Percolation and Jamming on Simple Cubic Lattice, Eur. Phys. J. B 60, 97–100 (2007).
  • [35] P.G. De Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, New York (1979).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23c42791-046e-4a5f-ab8b-ebd178f7eb72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.