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Abstract: The aim of this study was to investigate the influence of the time of pressure increase during single braking 
on the temperature in a brake disc. The case of linear pressure increase from zero to nominal value in the initial stage of 
braking and maintaining this value to standstill was considered. The time distribution of the sliding velocity of frictional 
elements was determined from the differential equation of motion with the initial condition. Based on the time 
distributions of pressure and sliding velocity, the intensity of the frictional heat flux, which affects on the disc surface, 
was determined. Spatio-temporal distribution of the temperature in a brake disc was found from analytical solution of 
the heat conduction boundary–value problem for semi–space heated on the outer surface heat flux with known a priori 
intensity. The numerical analysis conducted allowed to determine engineering equation, which describes relation 
between maximum temperature and the time of pressure increase.  
 
Keywords: braking, frictional heating, temperature, brake disc. 
 
Nomenclature: a – effective depth of the heat penetration [m]; Aa – nominal area of the contact surface [m2]; erf(x) – 
Gauss error function; erfc(x) = 1 – erf(x) – complementary error function; )(erfc)exp()(ierfc 221 xxxx    – integral of 

the complementary error function; f – friction coefficient; F – friction force [N]; H(x) – Heaviside step function; K – 
thermal conductivity [W K-1 m-1]; k – thermal diffusivity [m2 s-1];  p – contact pressure [Pa]; p0– nominal contact 
pressure [Pa]; q  – intensity of the frictional heat flux [W m-2]; t – time [s]; tm – time of pressure increase [s]; ts – braking 
time [s]; T – temperature, [K]; T* – dimensionless temperature; T0 – temperature scaling factor [K]; Ta – ambient 
temperature [K]; W0 – initial kinetic energy [J]; V – velocity sliding [m s-1]; V0 – initial velocity [m s-1 ]; τ – 
dimensionless time, τm – dimensionless time of pressure increase; τs – dimensionless braking time; ζ – dimensionless 
spatial coordinate. 
 
 
Introduction 
 
Temperature field in frictional elements of braking 
systems is the subject of long–term research and 
analysis. Knowledge of its distribution is a priority 
during design of the brake mechanism. Due to high costs 
and difficulty in performing experimental research, the 
temperature is estimated from the analytical solutions of 
the thermal problem of friction. Experimental research 
have demonstrated, that during a single, rapid braking 
with high initial velocity about 95% of the heat pervade 
to the frictional elements in perpendicular direction to 
the friction surface [12], therefore considered thermal 
problem of friction is often one-dimensional [4, 5]. It 
was demonstrated that the temperature values obtained 
analytically are sufficiently compatible with 
experimental results [6]. 
Analysis of the temperature fields in a brake disc 
replaced by semi–space during braking with constant 
deceleration and with constant or linearly increasing 
contact pressure were conducted in articles, respectively 

[10, 11]. In this study the basis of the analytical 
calculations of temperature distribution are the 
differential equation of motion with initial condition and 
one–dimensional heat conduction boundary–value 
problem. Evolution of the contact pressure was 
determined based on the approximation of the general 
equation [3]. At the beginning of the braking process 
pressure increases linearly from zero to nominal value in 
the time moment 

mt , next it maintains this value to 

standstill. Conducted numerical analysis investigated the 
influence of the 

mt  on temperature distribution in a brake 

disc.  
 
Statement to the problem 
 
Distribution of the pressure on the contact surface 
between disc and pad depends on specified external load 
and type of braking system. The general equation of the 
contact pressure p  in time t  has the following form [3]:

   .0,exp1)(),()( 0 sm tttttptpptp       (1) 
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Using the power series expansion of the exponential 
function and reducing it to the first two elements, from 
formula (1) we found: 
 .0),()()( smm

m

ttttHttH
t

t
tp          (2) 

Relative sliding velocity of the disc was determined from 
the differential equation of motion with initial condition 
[6]: 
 .0),(2
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tdV
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0)0( VV  ,                    (4) 

where  
,),()( 00

*
0 aAfpFtpFtF             (5) 

and braking time ts was found using the stop condition: 
 0)( stV .                    (6) 

Solution to the ordinary differential equation of first 
order (3), which fulfills the initial condition (4), has the 
following form: 
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is a braking time with immediate  0mt  pressure 

increase to nominal value 1)(* tp  and with linear 

velocity reduction 0* 1)( stttV  , 00 stt  . Taking into 

account in the solution (7) the time distribution of the 
pressure (2), we obtained: 
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Substituting the solution (9), (2.10) to the stop condition 
(2.6), the braking time ts was determined: 

mss ttt 5,00  .                  (11) 

Specific power of friction during braking is equal to [7]: 
 
 ),()()( tVtfptq  stt 0 .             (12) 

Substituting to formula (12) function )(tp  (1), (2) and 

)(tV  (7)–(10), we obtained: 

,0),()( 0 stttqqtq                 (13) 

where 
)()()()()(,000 msmm ttHtqttHtqtqVfpq   ,  (14) 
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Graphs of the functions )(tp  (2), )(* tV  (9), (10) and 

)(tq (14), (15) are presented in Fig. 1.  

 
 

 
 

Fig. 1 Time distributions of: specific power of friction q  (bolded line), contact pressure p  and velocity *V  with 
sm tt 26,0 , 

ss tt 87,00  . 

 
 
It was assumed that, the material of the disc is 
homogeneous, convective cooling has negligible 
influence on the temperature, and gradients of 
temperature in radial and circumferential directions were 
neglected. Taking into account abovementioned 
assumptions, the heating process of the brake disc was 

replaced by a simplified one-dimensional model – semi-
space 0z  heated on the outer surface 0z  by the 
heat flux with intensity )(tq  (13)–(15). Temperature 

distribution in semi–space was found from the solution 
to the following boundary–value heat conduction 
problem: 
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Applying the following dimensionless variables and 
parameters:  

 

    
a

z
  , 

2a

kt
  , 

2a

ktm
m   

2a

kts
s  ,

2

0
0

a

kts
s   ,0

0 K

aq
T   ,

0

*

T

TT
T a

                    (20) 

 
considered boundary–value problem (16)–(19) was 
written in the following dimensionless form: 
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where, having regard to relations (14), (15), we have:  
 

)()()()()( msmm HqHqq   ,       (25) 







 










 m

s
s

msm
m qq 










2

11
1)(,

2
1)(

00

2
.   (26) 

 
 
 

Solution to the problem 
 
Solution to the boundary-value problem (21)–(26) was 
found from the following Duhamel's theorem [8]:   
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is the solution of this problem with 1)(* q  [2]. 

Substituting to the formula (27) the following partial 
derivative [1]: 
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we obtained:  
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The function   ,mT  (31) was written in the form:   
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and using substitution  sx  /1 , we obtained: 
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Exploiting the following recurrence relation [9]: 
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Substituting the functions 8,6,4,2),,( kLk   (36)–(39) to the formula (33) we determined: 
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In analogy to the above, function   ,sT  (31) was written in the form: 
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Taking into account in equation (41) function   ),( mkL   , 8,6,4,2k  (36)–(39), we obtained:       
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Thus, dimensionless temperature in a semi–space was 
determined from the formula (30), based on functions 

  ,mT  (40) and   ,sT  (42). 

 
Numerical analysis  
 
The input dimensionless parameters used to conduct the 
numerical analysis were: distance from heated surface , 

time  , time of pressure increase 
m  and time of braking 

with constant pressure 0
s . Calculations were carried out 

with 10 s . Then, substituting the dimensionless time of 

pressure increase
m , from the formula (21) 

dimensionless braking time 
s was determined. In order 

to conduct comparative analysis of the temperature 
obtained with different time of pressure increase 

m , 

total amount of thermal energy directed to the brake disc 
should have constant value. In considered case, taking 
into account the function form )(q  (14), (15), it is 

equal to:  
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Substituting to the formula (43), assumed value of 
parameter 10 s  and relation (21), was found .5,0Q  It 

means that, with assumed input values the amount of 
heat absorbed by the disc is constant and independent of 
the time of the contact pressure increase 

m . 

Evolution of the dimensionless temperature *T  on few 
depths   is shown in Fig. 2a. At the beginning of the 

process, to the time moment 
m  , the temperature 

rapidly increases, and its distribution is similar to the 
linear. Further, the temperature increase is gentler. After 
reaching the maximum value, the temperature 
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monotonically decreases until the moment of standstill. 
Maximum value of the dimensionless temperature 

53,0max 
T  is achieved in time moment 

s 57,0  on the 

heated surface 0 . The time to reach maximum 

temperature value increases with increasing distance 
0  from friction surface to the center of the disc (delay 

effect). Increasing the depth  , the temperature 

monotonically decreases, which is the most rapid in 
moment 

s 57,0  (Fig. 2b). Effective depth of the heat 

penetration, i.e. distance from the contact surface, on 
which the temperature achieved 5% of the maximum 
value on heated surface is equal to 1 . It confirms the 

correctness of adopted parameters (20).  

 
 

  
 

Fig. 2. Relation of the dimensionless temperature *T  with: a – dimensionless time   on different distances from friction surface ; 

b – dimensionless depth   in selected moments of dimensionless time   with 3,0m , 15,1s . 

 
 

 
 

Fig. 3. a – evolution of the dimensionless temperature *T  on heated surface 0  in selected values of dimensionless time of 

contact pressure increase m ; b – relation between dimensionless maximum temperature *
maxT  and dimensionless time of pressure 

increase m  , obtained by calculations (solid line) and by approximation (44) (dashed line). 

 
 
The dimensionless temperature curves *T  on friction 
surface of the disc with different time of pressure 

increase 
m  are presented in Fig. 3a. With 0m  the 

pressure during braking is constant and the temperature 
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increase, at the beginning of the braking process, is the 
most rapid. Increasing the time of linear pressure 
distribution

m , the temperature increase became gentler, 

and the time to reach maximal temperature has a higher 
value. Relation between dimensionless maximum 
temperature *

maxT  and the time of pressure increase 
m  in 

the range of values 5,20  m  is shown in Fig. 3b. This 

figure also presents approximation of this relation, using 
the following function:  

53,00224,00703,00167,0)( 23*
max  mmmmT  ,  

               .5,20  m    (44) 

Increasing the time of linear pressure distribution causes 
monotonically decrease of maximal temperature. 
 
Conclusions 
 
The mathematical model of the frictional heating of the 
brake disc during single braking was proposed. The one–
dimensional thermal problem of friction with linear 
increasing of the contact pressure was formulated. 
Analytical solution to the problem was achieved using 
Duhamel's theorem. Numerical analysis of the obtained 

solution was conducted. Based on results, the following 
conclusions were determined:  
1 - from the beginning of braking to the moment of the 
nominal value of contact pressure attain 

m  , the 

temperature increase is violent and has almost linear 
distribution. Then, the temperature increases more 
slowly to reach the maximum value, and next, cooling of 
the friction surface occurs to the standstill; 
2 - total amount of the dimensionless thermal energy 
absorbed by the disc does not depend on the time of 
contact pressure increase 

m ; 

3 - maximal temperature is achieved on friction surface 
of the disc during braking with constant pressure. 
Increasing the time of linear pressure distribution causes 
decrease of maximal temperature; 
4 - based on numerical analysis the engineering equation 
(44) was proposed. It describes relation between 
maximal temperature and the time of pressure increase. 
It could be helpful during estimation of the maximum 
value of the temperature in a brake disc, thereby 
reducing the time and costs of the temperature 
calculations of braking systems designing.  
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