PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection of ammonia leak in laboratory conditions using a FLIR 306 camera and a portable gas detector

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study aimed to analyse detection methods of ammonia leakage by various electrical methods. Rapid detection of the escape of hazardous technical gases is extremely important in large chemical plants. The basis of the research was the use of a specialized camera, model FLIR GF306, to detect a leak of selected gases in a narrow infrared band. In laboratory conditions, the controlled emission of gaseous ammonia at various concentrations was simulated and gas detection was performed: a) using a narrow infrared thermography method, b) by a portable electrochemical detector dedicated to detecting ammonia. The turbulent flow of gas into the environment and high thermal contrast between the expanding gas and the background are the conditions for effective gas detection with a thermal imaging camera operating in a narrow infrared band.
Rocznik
Strony
35--41
Opis fizyczny
Bibliogr. 11 poz., rys., tab.
Twórcy
  • University of Applied Sciences in Tarnow, ul. Mickiewicza 8, 33-100 Tarnow, Poland
autor
  • Association of Polish Electrical Engineers, ul. Świętokrzyska 14, 00-050 Warszawa, Poland
Bibliografia
  • 1. Adefila K., Yan Y., Wang T. Leakage detection of gaseous CO2 through thermal imaging. 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings; 2015 May 11-14; Pisa, Italy. IEEE; 2015, pp. 261-265, doi: https://doi.org/10.1109/I2MTC34403.2015.
  • 2. Singh A.K., Pandey A., Chakrabarti P. Poly[2,5-bis(3-tetradecylthiophen-2-yl) thieno [3,2-b] thiophene] Organic Polymer Based-Interdigitated Channel Enabled Thin Film Transistor for Detection of Selective Low ppm Ammonia Sensing at 25°C. IEEE Sensors Journal. 2020;20(8):4047-4055. doi: https://doi.org/10.1109/JSEN.2019.2963269.
  • 3. Feynman R.P., Leighton R.B., Sands M., Gottlieb M.A., Pfeiffer R. The Feynman Lectures on Physics. California Institute of Technology, 2013. https://www.feynmanlectures.caltech. edu/I_toc.html (accessed 31.08.2020).
  • 4. Gawędzki W. Pomiary Elektryczne Wielkości Nieelektrycznych. Kraków: Wyd. AGH; 2010.
  • 5. Więcek B., Pacholski K. Termowizja i spektrometria w podczerwieni, zastosowania przemysłowe. Warszawa: PWN SA; 2017.
  • 6. Catalogue: Infrared cameras for gas detection, Flir GF306. https://flir.netx.net/file/asset/8496/original. (accessed 31.08.2020).
  • 7. Knapek J. Kamery termowizyjne do optycznego wykrywania wycieków gazów. Kraków; 2019. (unpublished materials of the EC-TEST SYSTEM company).
  • 8. Lisowska-Lis A. Thermographic monitoring of the power transformers. Measurement Automation Monitoring. 2017;63(4):154-157.
  • 9. Lisowska-Lis A., Witos F., Szerszeń G. Thermographic analysis of power oil transformer surface hot spot areas combined with analysis of acoustic signals recorded on line. Proceeding Volume 11204, 14th Conference on Integrated Optics: Sensors, Sensing Structures, and Methods, 112040B (2019); 2019 Feb 25 – Mar 1; Szczyrk-Gliwice, Poland. SPIE; 2019. doi: https://doi.org/10.1117/12.2536700.
  • 10. Catalogue: Inspire Analytical Systems. Gas detectors HOVA. https://hovacal.de (accessed 31.08.2020).
  • 11. Catalogue: “Gas detector: GasAlert Extreme Ammonia Gas Detector”. https://www.honeywellanalytics.com/~/ media/honeywell-analytics/products/gasalert-extreme/documents/gasalert-extreme-user-manual.pdf?la=en (accessed 31.08.2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23b07565-78a9-4d88-967d-13dfb7126c87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.