PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

MHD radiant couple stress tetrahybridized nanofluid streaming inside slanted rotating micro-parallel plates subject to Hall currents: a neuro-computing approach

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The hydrothermal dynamical effectiveness and usefulness of highly responsive spinning mechanisms under slanted Hall currents is a significant issue in several manufacturing and experimental functions. Hybridized nanoparticles have novel properties that are advantageous for a range of technical uses. Compared to trihybrid, bihybrid, or mono-nanofluid, tetrahybrid nanofluid (Tetra HNF) is a new idea in research that enables a faster cooling process. These motivate us to research the effects of oblique Hall currents on a non-Newtonian couple stress tetrahybrid nanofluid flow in an oblique channel with oscillatory heating under strong external magnetic attraction with Hall currents in a magneto-gyrating environment. To create tetrahybrid nanofluids (Cu–TiO–Ag–AlO/WEG), copper, titania, silver, and alumina nanopowder forms are dispersed in a colloidal solution of water and ethylene glycol (vol. 60–40). We discuss four kinds of nanoparticles: spheres, bricks, cylinders, and platelets. Mechanical circumstances and presumptions are used to build the partial differential equations (PDEs) that describe the mechanical problems. The dimensionless energy and momentum with related wall constraints are resolved using an analytical approach. Multiple kinds of graphic representations and tabulated data are presented to fully accomplish and demonstrate the mechanical aspects of important developing parameters on the hydrothermal trends and their practical significance. Our results demonstrate that the resultant velocity rapidly rises over growing changes in inclined Hall currents. The velocity profile gets an elevation for the inclination of the channel in the range , but reversal flow occurs for a slight angle of inclination (). Platelet-shaped NPs transport higher heat than other shapes (spherical, brick shaped, or cylindrical). Tetrahybrid nanofluid achieves higher heat transport than other base fluid types (pure WEG or mono/bi/trihybrid nanofluids). An artificial neural network (ANN) model is also developed based on testing datasets generated via the analytical evaluation. This ANN architecture achieves an astounding accuracy in predicting critical flow amounts. Our simulations can be applied to the development of reliable oblique Hall sensors and to several manufacturing procedures, including the interaction of nano-polymers and the use of composite nano-lubricants in regulating temperature.
Rocznik
Strony
art. no. e198, 2024
Opis fizyczny
Bibliogr. 52 poz., rys., wykr.
Twórcy
autor
  • Department of Mathematics, Bajkul Milani Mahavidyalaya, Purba Medinipur 721655, India
autor
  • Department of Mathematics, University of Gour Banga, Malda 732103, India
autor
  • Department of Applied Mathematics, Vidyasagar University, Midnapore 721102, India
Bibliografia
  • 1. Choi S, Eastman J. Enhancing thermal conductivity of fluids with nanoparticles. Proc. ASME Int. Mech. Eng. Cong. Expos. 1995;66.
  • 2. Sarkar J, Ghosh P, Adil A. A review on hybrid nanofluids: recentre search, development and applications. Renew Sustain Energy Rev. 2015;43:164–77. https://doi.org/10.1016/j.rser.2014.11.023.
  • 3. Akbar AA, Ahammad N, Awan A, Hussein A, Gamaoun F, Tageldin E, Ali B. Insight into the role of nanoparticles shape factors and diameter on the dynamics of rotating water-based fluid. Nano-materials. 2022;12:2801. https://doi.org/10.3390/nano12162801.
  • 4. Ali B, Ahammad N, Awan A, Oke A, Tageldin E, Shah F, Majeed S. The dynamics of water-based nanofluid subject to the nanoparticle’s radius with a significant magnetic field: The case of rotating micropolar fluid. Sustainability. 2022;14:10474. https://doi.org/10.3390/su141710474.
  • 5. Awan AU, Majeed S, Ali B, Ali L. Significance of nanoparticles aggregation and coriolis force on the dynamics of prandtl nano-fluid: The case of rotating flow. Chinese J Phys. 2022;79:264–74.https://doi.org/10.1016/j.cjph.2022.07.008.
  • 6. Awan AU, Ahammad NA, Shatanawi W, Allahyani SA, Tag-ElDinEM, Abbas N, Ali B. Significance of magnetic field and darcy-forchheimer law on dynamics of casson-sutterby nanofluid subjectto a stretching circular cylinder. Int Commun Heat Mass Transfer. 2022;139: 106399. https://doi.org/10.1016/j.icheatmasstransfer.2022.106399.
  • 7. Ullah Awan A, Shah SAA, Ali B. Bio-convection effects on williamson nanofluid flow with exponential heat source and motile microorganism over a stretching sheet. Chinese J Phys. 2022;77:2795–810. https://doi.org/10.1016/j.cjph.2022.04.002.
  • 8. Shah S, Ahammad N, Din E, Gamaoun F, Awan A, Ali B. Bio-convection effects on prandtl hybrid nanofluid flow with chemical reaction and motile microorganism over a stretching sheet. Nanomaterials. 2022. https://doi.org/10.3390/nano12132174.
  • 9. Shah SAA, Awan AU. Significance of magnetized Darcy-Forch-heimer stratified rotating Williamson hybrid nanofluid flow: a case of 3d sheet. Int Commun Heat Mass Transfer. 2022;136: 106214.https://doi.org/10.1016/j.icheatmasstransfer.2022.106214.
  • 10. Shah SAA, Ahammad NA, Ali B, Guedri K, Awan AU, Gamaoun F, Tag-ElDin EM. Significance of bio-convection, mhd, thermal radiation and activation energy a cross prandtl nanofluid flow:a case of stretching cylinder. Int Commun Heat Mass Transfer. 2022;137: 106299. https://doi.org/10.1016/j.icheatmasstransfer.2022.106299.
  • 11. Das S, Jana R, Makinde O. Makinde, mhd flow of cu-al2o3/water hybrid nanofluid in porous channel analysis of entropy generation, defect. diffus. Forum. 2017;377:42–61. https://doi.org/10.4028/www.scientific.net/DDF.377.42.
  • 12. Akbar N, Iqbal Z, Ahmad B, Maraj E. Mechanistic investigation for shape factor analysis of sio2/mos2 - ethylene glycol inside a vertical channel influenced by oscillatory temperature gradient. Canad J Phys. 2019;97:950–8. https:// doi. org/ 10. 1139/cjp-2018-0717.
  • 13. Hayat T, Nadeem S, Khan A. Numerical analysis of ag-cuo/water rotating hybrid nanofluid with heat generation and absorption. Canad J Phys. 2019;97:644–50. https:// doi. org/ 10. 1139/cjp-2018-0011.
  • 14. Ghadikolaei S, Gholinia M, Hoseini M, Ganji D. Natural convection mhd flow due to mos2-ag nanoparticles suspended inc2h6o2h2o hybrid base fluid with thermal radiation. J Taiwan Instit Chem Eng. 2019;97:12–23. https://doi.org/10.1016/j.jtice.2019.01.028.
  • 15. Elsaid EM, Abdel-wahed MS. Mhd mixed convection ferro fe3o4/cu-hybrid-nanofluid runs in a vertical channel. Chinese J Phys.2022;76:269–82. https://doi.org/10.1016/j.cjph.2021.12.016.
  • 16. Elsaid EM, Abdel-wahed MS. Mixed convection hybrid-nanofluid in a vertical channel under the effect of thermal radiative flux. Case Stud Therm Eng. 2021;25: 100913. https://doi.org/10.1016/j.csite.2021.100913.
  • 17. Xuan Z, Zhai Y, Ma M, Li Y, Wang H. Thermo-economic performance and sensitivity analysis of ternary hybrid nanofluids. JMol Liquids. 2021;323: 114889. https://doi.org/10.1016/j.molliq.2020.114889.
  • 18. Animasaun I, Yook S-J, Muhammad T, Mathew A. Dynamics of ternary-hybrid nanofluid subject to magnetic flux density and heat source or sink on a convectively heated surface. Surfaces and Interfaces. 2022;28: 101654. https://doi.org/10.1016/j.surfin.2021.101654.
  • 19. Saleem S, Animasaun I, Yook S-J, Al-Mdallal QM, Shah NA, Faisal M. Insight into the motion of water conveying three kinds of nanoparticles shapes on a horizontal surface: Significance of thermo-migration and brownian motion. Surfaces and Interfaces. 2022;30: 101854. https://doi.org/10.1016/j.surfin.2022.101854.
  • 20. Cao W, A. I.L., S.-J. Yook, O. V.A., X. Ji,. Simulation of the dynamics of colloidal mixture of water with various nanoparticles at different levels of partial slip: Ternary-hybrid nanofluid. Int. Commun. Heat Mass Transfer. 2022;135: 106069. https://doi.org/10.1016/j.icheatmasstransfer.2022.106069.
  • 21. Sajid T, Jamshed W, Eid MR, Cieza Altamirano G, Aslam F, Mahal Alanzi A, Abd-Elmonem A. Magnetized cross tetra hybrid nanofluid passed a stenosed artery with nonuniform heat source(sink) and thermal radiation: Novel tetra hybrid tiwari and das nanofluid model. J Magnet Magnet Mater. 2023;569: 170443.https://doi.org/10.1016/j.jmmm.2023.170443.
  • 22. Sajid T, Jamshed W, Algarni S, Alqahtani T, Eid MR, Irshad K, Altamirano GC, El Din SM, Nahar Tajer KW. Catalysis reaction influence on 3d tetra hybrid nanofluid flow via oil rig solar panel sheet: Case study towards oil extraction. Case Stud Thermal Eng.2023;49: 103261. https://doi.org/10.1016/j.csite.2023.103261.
  • 23. Adnan W, Abbas MZ, Bani-Fwaz KK. Asogwa, Thermal efficiency of radiated tetra-hybrid nanofluid [(al2o3-cuo-tio2-ag)/water]tetra under permeability effects over vertically aligned cylinder subject to magnetic field and combined convection. Sci Prog. 2023;106:00368504221149797. https://doi.org/10.1177/00368504221149797.
  • 24. Karmakar P, Barman A, Das S. Edl transport of blood-infusing tetra-hybrid nano-additives through a cilia-layered endoscopic arterial path. Mater Today Commun. 2023;36: 106772. https://doi.org/10.1016/j.mtcomm.2023.106772.
  • 25. Salawu S, Dada M, Fenuga O. Thermal explosion and irreversibility of hydromagnetic reactive couple stress fluid with viscous dissipation and navier slips. Theor Appl Mech Lett. 2019;9:246–53.https://doi.org/10.1016/j.taml.2019.04.003.
  • 26. Mkhatshwa MP, Motsa SS, Sibanda P. Mhd mixed Convection flow of couple stress fluid over an oscillatory stretching sheet with thermophoresis and thermal diffusion using the overlapping multi-domain spectral relaxation approach. Int J Appl Comput Math.2021;7:93. https://doi.org/10.1007/s40819-021-01043-0.
  • 27. Khan SU, Shehzad SA, Rauf A, Ali N. Mixed convection flow of couple stress nanofluid over oscillatory stretching sheet with heat absorption/generation effects. Results Phys. 2018;8:1223–31.https://doi.org/10.1016/j.rinp.2018.01.054.
  • 28. Palaiah SS, Basha H, Reddy GJ. Magnetized couple stress fluid flow past a vertical cylinder under thermal radiation and viscous dissipation effects, Nonlinear. Engineering. 2021;10:343–62.https://doi.org/10.1515/nleng-2021-0027.
  • 29. Salawu S, Oderinu R, Ohaegbue A. Thermal runaway and thermodynamic second law of a reactive couple stress hydromagnetic fluid with variable properties and navier slips. Scient African.2020;7: e00261. https://doi.org/10.1016/j.sciaf.2019.e00261.
  • 30. Ali N, Ullah Khan S, Sajid M, Abbas Z. Mhd flow and heat transfer of couple stress fluid over an oscillatory stretching sheet with heat source/sink in porous medium. Alexandria Eng J.2016;55:915–24. https://doi.org/10.1016/j.aej.2016.02.018.
  • 31. Hayat T, Muhammad T, Shehzad SA, Alsaedi A. Simultaneous effects of magnetic field and convective condition in three-dimensional flow of couple stress nanofluid with heat generation/absorp-tion. J Brazil Soc Mech Sci Eng. 2017;39:1165–76. https://doi.org/10.1007/s40430-016-0632-5.
  • 32. Mahesh R, Mahabaleshwar U, Kumar PV, Öztop HF, Abu-Hamdeh N. Impact of radiation on the mhd couple stress hybrid nanofluid flow over a porous sheet with viscous dissipation. Results Eng. 2023;17: 100905. https:// doi. org/ 10. 1016/j. rineng. 2023.100905.
  • 33. Alnahdi AS, Nasir S, Gul T. Couple stress ternary hybrid nano-fluid flow in a contraction channel by means of drug delivery function. Math Comput Simul. 2023;210:103–19. https://doi.org/10.1016/j.matcom.2023.02.021.
  • 34. Hall EH. On a new action of the magnet on electric currents. Am J Math. 1879;2:287–92.
  • 35. Guchhait S, Das S, Jana R. Combined effect of hall current and rotation on mhd mixed convection oscillating flow in a rotating vertical channel. Int J Comput Appl. 2012;49:1–11. https://doi.org/10.5120/7684-0990.
  • 36. Iqbal Z, Akbar N, Azhar E, Maraj E. Mhd rotating transport of cnts in a vertical channel submerged with hall current and oscillations. Eur Phys J Plus. 2017. https:// doi. org/ 10. 1140/ epjp/i2017-11406-0.
  • 37. Iqbal Z, Akbar N, Azhar E, Maraj E. Performance of hybrid nanofluid (cu-cuo/water) on mhd rotating transport in oscillating vertical channel inspired by hall current and thermal radiation. Alexandria Eng J. 2018;57:1943–54. https://doi.org/10.1016/j.aej.2017.03.047.
  • 38. Veera Krishna M, Reddy G, Chamkha A. Hall effects on unsteady mhd oscillatory free convective flow of second grade fluid through porous medium between two vertical plates. Phys Fluids. 2018;30:023106. https://doi.org/10.1063/1.5010863.
  • 39. Mahato N, Banerjee S, Jana R, Das S. Mos 2 -sio 2 /eg hybrid nanofluid transport in a rotating channel under the influence of a strong magnetic dipole (hall effect). Multidiscipline Model Mater Str. 2020;16:1595–616. https:// doi. org/ 10. 1108/MMMS-12-2019-0232.
  • 40. Das S, Mahato N, Ali A, Jana R. Dynamical behaviour of magneto-copper-titania/water-ethylene glycol stream inside a gyrating channel. Chem Phys Lett. 2022;793: 139476. https://doi.org/10.1016/j.cplett.2022.139476.
  • 41. Das S, Mahato N, Ali A, Jana RN. Aspects of arrhenius kinetics and hall currents on gyratory couette flow of magnetized ethylene glycol containing bi-hybridized nanomaterials. Heat Transfer. 2023;52:2995–3026. https://doi.org/10.1002/htj.22814.
  • 42. Prakash D, Muthtamilselvan M. Effect of radiation on transient mhd flow of micropolar fluid between porous vertical channel with boundary conditions of the third kind. Ain Shams Eng J.2014;5:1277–86. https://doi.org/10.1016/j.asej.2014.05.004.
  • 43. Oahimire J, Olajuwon B. Effect of hall current and thermal radiation on heat and mass transfer of a chemically reacting mhd flow of a micropolar fluid through a porous medium, Journal of King Saud University -. Eng Sci. 2014;26:112–21. https:// doi. org/10.1016/j.jksues.2013.06.008. (thermal and Micro structure Properties.).
  • 44. Sheikholeslami M, Domiri Ganji D, Younus Javed M, Ellahi R. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J Magnet Magnet Mater. 2015;374:36–43. https://doi.org/10.1016/j.jmmm.2014.08.021.
  • 45. Thriveni K, Mahanthesh B. Sensitivity analysis of nonlinear radiated heat transport of hybrid nanoliquid in an annulus subjected to the nonlinear boussinesq approximation. J Therm Anal Calorim. 2021;143:2729–48. https://doi.org/10.1007/s10973-020-09596-w.
  • 46. Ahmed S, Anwar Bég O, Ghosh S. A couple stress fluid modeling on free convection oscillatory hydromagnetic flow in an inclined rotating channel. Ain Shams Eng J. 2014;5:1249–65. https://doi.org/10.1016/j.asej.2014.04.006.
  • 47. Cogley AC, Vincent WG, Gilles SE. Differential approximation for radiative transfer in a nongrey gas near equilibrium. AIAA J.1968;6:551–3. https://doi.org/10.2514/3.4538.
  • 48. Ali A, Banerjee SM, Das S. Hall and ion slip current’s impact on magneto-sodium alginate hybrid nanoliquid past a moving vertical plate with ramped heating, velocity slip and darcy effects. Multi-discipline Model Mater Str. 2021;17:65–101. https://doi.org/10.1108/MMMS-12-2019-0218.
  • 49. Abbas N, Nadeem S, Saleem S, Issakhov A. Transportation of modified nanofluid flow with time dependent viscosity over a rigaplate: Exponentially stretching. Ain Shams Eng J. 2021;12:3967–73. https://doi.org/10.1016/j.asej.2021.01.034.
  • 50. Abbasi A, Al-Khaled K, Khan MI, Khan SU, El-Refaey AM, Farooq W, Jameel M, Qayyum S. Optimized analysis and enhanced thermal efficiency of modified hybrid nanofluid (al2o3,cuo, cu) with nonlinear thermal radiation and shape features. Case Stud Therm Eng. 2021;28: 101425. https://doi.org/10.1016/j.csite.2021.101425.
  • 51. Shafiq A, Çolak AB, Sindhu T. Modeling of soret and dufour’sconvective heat transfer in nanofluid flow through a moving needle with artificial neural network. Arabian J Sci Eng. 2023;48:2807–20. https://doi.org/10.1007/s13369-022-06945-9.
  • 52. Ali A, Das S. Applications of neuro-computing and fractional calculus to blood streaming conveying modified trihybrid nano-particles with interfacial nanolayer aspect inside a diseased cili-ated artery under electro osmotic and lorentz forces. Int Commun Heat Mass Transfer. 2024;152: 107313. https://doi.org/10.1016/j.icheatmasstransfer.2024.107313.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23a0720a-254d-45fc-b858-1560b24bd97d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.