Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work presents an analysis of the effect of ball indentation on fatigue crack growth. The main objective is to assess the effectiveness of indentation, particularly its influence on the J-integral, as a fracture criterion governing fracture toughness. Using the finite element method in Abaqus 6.14, we analyzed the residual stresses induced by indentation at different positions along the predicted line of crack propagation and calculated the J-integral. The results highlight that indentation at the crack tip position significantly reduces the J-integral compared to non-indented structures, demonstrating its potential to extend the lifespan of cracked components by delaying crack propagation. The findings underscore the practical application of ball indentation as a viable technique to retard crack growth, contributing to the longevity of cracked components and, consequently, structural integrity. This analysis revealed a crack propagation retardation gain of up to 56%.
Wydawca
Czasopismo
Rocznik
Strony
21--34
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
- Department of Mechanical Engineering, University of Tiaret, Algeria
- Laboratory LPQ3M, BP763,University of Mascara, Mascara 29000, Algeria
autor
- Laboratory LPQ3M, BP763,University of Mascara, Mascara 29000, Algeria
autor
- Laboratory LPQ3M, BP763,University of Mascara, Mascara 29000, Algeria
autor
- Laboratory LPQ3M, BP763,University of Mascara, Mascara 29000, Algeria
autor
- Laboratory LPQ3M, BP763,University of Mascara, Mascara 29000, Algeria
autor
- Laboratory LPQ3M, BP763,University of Mascara, Mascara 29000, Algeria
Bibliografia
- 1. S.M. Walley, Historical origins of indentation hardness testing, Mater. Sci. Technol. (United Kingdom). 28 (2012) 1028–1044. https://doi.org/10.1179/1743284711Y.0000000127.
- 2. S. Arunkumar, A Review of Indentation Theory, Mater. Today Proc. 5 (2018) 23664–23673. https://doi.org/10.1016/j.matpr.2018.10.156.
- 3. G.D. Quinn, R.C. Bradt, On the Vickers Indentation Fracture Toughness Test, 680 (2007) 673–680. https://doi.org/10.1111/j.1551-2916.2006.01482.x.
- 4. N. Ogasawara, N. Chiba, X. Chen, Measuring the plastic properties of bulk materials by single indentation test, 54 (2006) 65–70. https://doi.org/10.1016/j.scriptamat.2005.09.009.
- 5. J. Hay, Introduction to instrumented indentation testing, Exp. Tech. 33 (2009) 66–72.
- 6. T. Nakamura, T. Wang, S. Sampath, Determination of properties of graded materials by inverse analysis and instrumented indentation, Acta Mater. 48 (2000) 4293–4306. https://doi.org/10.1016/S1359-6454(00)00217-2.
- 7. H. Wang, L. Zhu, B. Xu, Residual Stresses and Nanoindentation Testing of Films and Coatings, Residual Stress. Nanoindentation Test. Film. Coatings. (2018) 21–36. https://doi.org/10.1007/978-981-10-7841-5.
- 8. J. Fu, S. Kamali-Bernard, F. Bernard, M. Cornen, Comparison of mechanical properties of C-S-H and portlandite between nano-indentation experiments and a modeling approach using various simulation techniques, Compos. Part B Eng. 151 (2018) 127–138. https://doi.org/10.1016/j.compositesb.2018.05.043.
- 9. A. Alhasanyah, T.K. Vaidyanathan, R.J. Flinton, Effect of core thickness differences on post-fatigue indentation fracture resistance of veneered zirconia crowns, J. Prosthodont. 22 (2013) 383–390. https://doi.org/10.1111/jopr.12016.
- 10. W.K. Lim, J.H. Song, B. V. Sankar, Effect of ring indentation on fatigue crack growth in an aluminum plate, Int. J. Fatigue. 25 (2003) 1271–1277. https://doi.org/10.1016/j.ijfatigue.2003.08.011.
- 11. T.W. Clyne, J.E. Campbell, M. Burley, J. Dean, Profilometry-Based Inverse Finite Element Method Indentation Plastometry, Adv. Eng. Mater. 23 (2021). https://doi.org/10.1002/adem.202100437.
- 12. N. Razavi, M.R. Ayatollahi, A. Amouzadi, F. Berto, Effects of different indentation methods on fatigue life extension of cracked specimens, Fatigue Fract. Eng. Mater. Struct. 41 (2018) 287–299. https://doi.org/10.1111/ffe.12678.
- 13. R. Růžek, J. Pavlas, R. Doubrava, Application of indentation as a retardation mechanism for fatigue crack growth, Int. J. Fatigue. 37 (2012) 92–99. https://doi.org/10.1016/j.ijfatigue.2011.09.012.
- 14. X.D. Hou, N.M. Jennett, A method to separate and quantify the effects of indentation size, residual stress and plastic damage when mapping properties using instrumented indentation, J. Phys. D. Appl. Phys. 50 (2017). https://doi.org/10.1088/1361-6463/aa8a22.
- 15. S. Syngellakis, H. Habbab, B.G. Mellor, Finite element simulation of spherical indentation experiments, Comput. Exp. Stud. (2018) 129.
- 16. M. Aldarwish, A. Grbović, G. Kastratović, A. Sedmak, M. Lazić, Stress intensity factors evaluation at tips of multi-site cracks in unstiffened 2024-t3 aluminium panel using XFEM, Teh. Vjesn. 25 (2018) 1616–1622. https://doi.org/10.17559/TV-20170309133824.
- 17. Y.A. Fageehi, A.M. Alshoaibi, Nonplanar Crack Growth Simulation of Multiple Cracks Using Finite Element Method, Adv. Mater. Sci. Eng. 2020 (2020). https://doi.org/10.1155/2020/8379695.
- 18. B. Seyfi, N. Fatouraee, M. Imeni, Mechanical modeling and characterization of meniscus tissue using flat punch indentation and inverse finite element method, J. Mech. Behav. Biomed. Mater. 77 (2018) 337–346. https://doi.org/10.1016/j.jmbbm.2017.09.023.
- 19. S. Carlsson, P.-L. Larsson, On the determination of residual stress and strain fields by sharp indentation testing.: Part II: experimental investigation, Acta Mater. 49 (2001) 2193–2203.
- 20. N. Huber, J. Heerens, On the effect of a general residual stress state on indentation and hardness testing, Acta Mater. 56 (2008) 6205–6213.
- 21. N. Razavi, M.R. Ayatollahi, F. Berto, Assessment of fatigue crack growth behavior of cracked specimens repaired by indentation, Procedia Struct. Integr. 13 (2018) 69–73.
- 22. L. Deng, J. Zhao, Z. Wang, Estimation of residual stress of metal material with yield plateau by continuous spherical indentation method, Mater. Res. Express. 7 (2020). https://doi.org/10.1088/2053-1591/ab7069.
- 23. P. Chantikul, G.R. Anstis, B.R. Lawn, D.B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: II, strength method, J. Am. Ceram. Soc. 64 (1981) 539–543.
- 24. N.H. Faisal, R. Ahmed, R.L. Reuben, Indentation testing and its acoustic emission response: applications and emerging trends, Int. Mater. Rev. 56 (2011) 98–142.
- 25. T.N. Chakherlou, J. Vogwell, The effect of cold expansion on improving the fatigue life of fastener holes, Eng. Fail. Anal. 10 (2003) 13–24.
- 26. A. Djebli, A. Baltach, M. Lallam, M. Bendouba, Numerical Analysis of Plate Thickness Effect on Residual Stress Distribution around a Cold Expanded Hole, Trans. FAMENA. 47 (2023) 47–59.
- 27. A. Baltach, A. Djebli, M. Bendouba, A. Aid, others, Numerical analysis and optimization of the residual stresses distribution induced by cold expansion technique, Frat. Ed Integrità Strutt. 12 (2018) 252–265.
- 28. H. Hosseini-Toudeshky, B. Mohammadi, H.R. Daghyani, Mixed-mode fracture analysis of aluminium repaired panels using composite patches, Compos. Sci. Technol. 66 (2006) 188–198.
- 29. M. Bendouba, A. Djebli, A. Aid, N. Benseddiq, M. Benguediab, Time-dependent J-integral solution for semi-elliptical surface crack in HDPE, C. Mater. Con. 45 (2015) 163–186.
- 30. Harter JA. AFGROW users guide and technical manual, AFRL-VA-WP-TR-2008, Air Force Research Laboratory, Ohio, USA; 2008
- 31. B. Farahmand, G. Bockrath, J. Glassco, Fatigue and fracture mechanics of high risk parts: application of LEFM \& FMDM theory, Springer Science \& Business Media, 2012.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-239a98a1-b843-481f-a83b-7df60ad89045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.