PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hyperchaos, adaptive control and synchronization of a novel 5-D hyperchaotic system with three positive Lyapunov exponents and its SPICE implementation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this research work, a twelve-term novel 5-D hyperchaotic Lorenz system with three quadratic nonlinearities has been derived by adding a feedback control to a ten-term 4-D hyperchaotic Lorenz system (Jia, 2007) with three quadratic nonlinearities. The 4-D hyperchaotic Lorenz system (Jia, 2007) has the Lyapunov exponents L1 = 0.3684,L2 = 0.2174,L3 = 0 and L4 =−12.9513, and the Kaplan-Yorke dimension of this 4-D system is found as DKY =3.0452. The 5-D novel hyperchaotic Lorenz system proposed in this work has the Lyapunov exponents L1 = 0.4195,L2 = 0.2430,L3 = 0.0145,L4 = 0 and L5 = −13.0405, and the Kaplan-Yorke dimension of this 5-D system is found as DKY =4.0159. Thus, the novel 5-D hyperchaotic Lorenz system has a maximal Lyapunov exponent (MLE), which is greater than the maximal Lyapunov exponent (MLE) of the 4-D hyperchaotic Lorenz system. The 5-D novel hyperchaotic Lorenz system has a unique equilibrium point at the origin, which is a saddle-point and hence unstable. Next, an adaptive controller is designed to stabilize the novel 5-D hyperchaotic Lorenz system with unknown system parameters. Moreover, an adaptive controller is designed to achieve global hyperchaos synchronization of the identical novel 5-D hyperchaotic Lorenz systems with unknown system parameters. Finally, an electronic circuit realization of the novel 5-D hyperchaotic Lorenz system using SPICE is described in detail to confirm the feasibility of the theoretical model.
Słowa kluczowe
Rocznik
Strony
409--446
Opis fizyczny
Bibliogr. 131 poz., rys., wzory
Twórcy
  • Research and Development Centre, Vel Tech University, Avadi, Chennai- 600062, Tamilnadu, India
autor
  • Physics Department, Aristotle University of Thessaloniki, GR-54124, Greece
autor
  • School of Electronics and Telecommunications, Hanoi University of Science and Technology, 01 Dai Co Viet, Hanoi, Vietnam
Bibliografia
  • [1] T. Kapitaniak: Controlling Chaos: Theoretical and Practical Methods in Nonlinear Dynamics. New York, USA, Academic Press, 1996.
  • [2] A. S. Pikovsky, M. G. Rosenblum and J. Kurths: Synchronization: A Unified Concept in Nonlinear Sciences. Cambridge, UK, Cambridge University Press, 2001.
  • [3] M. Lakshmanan and K. Murali: Chaos in Nonlinear Oscillators: Controlling and Synchronization, Singapore, World Scientific, 1996.
  • [4] G. L. Baker and J. P. Gollub: Chaotic Dynamics: An Introduction. New York, USA, Cambridge University Press, 1990.
  • [5] K. T. Alligood, T. D. Sauer and J. A. Yorke: Chaos: An introduction to Dynamical Systems. New York, Springer-Verlag, 2000.
  • [6] D. Ruelle and F. Takens: On the nature of turbulence. Communications in Mathematical Physics, 20 (1971), 167-192.
  • [7] R. M. May: Limit cycles in predator-prey communities. Science, 177 (1972), 900-908.
  • [8] M. J. Feigenbaum: Universal behaviour in nonlinear systems. Physica D: Nonlinear Phenomena, 7 (1983), 16-39.
  • [9] E. N. Lorenz: Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20 (1963), 130-141.
  • [10] O. E. Rössler: An equation for continuous chaos. Physics Letters A, 57 (1976), 397-398.
  • [11] A. Arneodo, P. Coullet and C. Tresser: Possible new strange attractors with spiral structure. Communications in Mathematical Physics, 79 (1981), 573-579.
  • [12] J. C. Sprott: Some simple chaotic flows. Physical Review E, 50 (1994), 647-650.
  • [13] G. Chen and T. Ueta: Yet another chaotic attractor. International Journal of Bifurcation and Chaos, 9 (1999), 1465-1466.
  • [14] J. Lu and G. Chen: A new chaotic attractor coined. International Journal of Bifurcation and Chaos, 12 (2002), 659-661
  • [15] C. X. Liu, T. Liu, L. Liu and K. Liu: A new chaotic attractor. Chaos, Solitons and Fractals, 22 (2004), 1031-1038.
  • [16] G. Cai and Z. Tan: Chaos synchronization of a new chaotic system via nonlinear control. Journal of Uncertain Systems, 1 (2007), 235-240.
  • [17] G. Tigan and D. Opris: Analysis of a 3D chaotic system. Chaos, Solitons and Fractals, 36 (2008), 1315-1319.
  • [18] D. Li: A three-scroll chaotic attractor. Physics Letters A, 372 (2008), 387-393.
  • [19] V. Sundarapandian and I. Pehlivan: Analysis, control, synchronization and circuit design of a novel chaotic system. Mathematical and Computer Modelling, 55 (2012), 1904-1915.
  • [20] V. undarapandian: Analysis and anti-synchronization of a novel chaotic system via active and adaptive controllers. Journal of Engineering Science and Technology Review, 6 (2013), 45-52.
  • [21] S. Vaidyanathan: A new six-term 3-D chaotic system with an exponential nonlinearity. Far East Journal of Mathematical Sciences, 79 (2013), 135-143.
  • [22] S. Vaidyanathan: Analysis and adaptive synchronization of two novel chaotic systems with hyperbolic sinusoidal and cosinusoidal nonlinearity and unknown parameters. Journal of Engineering Science and Technology Review, 6 (2013), 53-65.
  • [23] S. Vaidyanathan: A new eight-term 3-D polynomial chaotic system with three quadratic nonlinearities. Far East Journal of Mathematical Sciences, 84 (2014), 219-226.
  • [24] S. Vaidyanathan: Analysis, control and synchronisation of a six-term novel chaotic system with three quadratic nonlinearities. International Journal of Modelling, Identification and Control, 22 (2014), 41-53.
  • [25] S. Vaidyanathan and K. Madhavan: Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system. International Journal of Control Theory and Applications, 6 (2013), 121-137.
  • [26] S. Vaidyanathan: Analysis and adaptive synchronization of eight-term 3-D polynomial chaotic systems with three quadratic nonlinearities. European Physical Journal: Special Topics, 223 (2014), 1519-1529.
  • [27] S. Vaidyanathan, C. Volos, V. T. Pham, K. Madhavan and B. A. Idowu: Adaptive backstepping control, synchronization and circuit simulation of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities.Archives of Control Sciences, 24 (2014), 257-285.
  • [28] S. Vaidyanathan: Generalised projective synchronisation of novel 3-D chaotic systems with an exponential non-linearity via active and adaptive control. International Journal of Modelling, Identification and Control, 22 (2014), 207-217.
  • [29] I. Pehlivan, I. M. Moroz and S. Vaidyanathan: Analysis, synchronization and circuit design of a novel butterfly attractor. Journal of Sound and Vibration, 333 (2014), 5077-5096.
  • [30] S. Jafari and J. C. Sprott: Simple chaotic flows with a line equilibrium. Chaos, Solitons and Fractals, 57 (2013), 79-84.
  • [31] V. T. Pham, C. Volos, S. Jafari, Z. Wei and X. Wang: Constructing a novel no-equilibrium chaotic system. International Journal of Bifurcation and Chaos, 24 (2014), 1450073.
  • [32] J. M. Tuwankotta: Chaos in a coupled oscillators system with widely spaced frequencies and energy-preserving non-linearity. International Journal of Non- Linear Mechanics, 41 (2006), 180-191.
  • [33] K. Shimizu, M. Sekikawa and N. Inaba: Mixed-mode oscillations and chaos from a simple second-order oscillator under weak periodic perturbation. Physics Letters A, 375 (2011), 1566-1569.
  • [34] J. Kengne, J. C. Chedjou, G. Kenne and K. Kyamakya: Dynamical properties and chaos synchronization of improved Colpitts oscillators. Communications in Nonlinear Science and Numerical Simulation. 17 (2012), 2914-2923.
  • [35] S. Behnia, S. Afrang, A. Akhshani and Kh. Mabhouti: A novel method for controlling chaos in external cavity semiconductor laser. Optik - International Journal for Light and Electron Optics, 124 (2013), 757-764.
  • [36] E. M. Shahverdiev and K. A. Shore: Multiplex chaos synchronization in semiconductor lasers with multiple optoelectronic feedbacks. Optik - International Journal for Light and Electron Optics, 124 (2013), 1350-1353.
  • [37] G. Yuan, X. Zhang and Z. Wang: Generation and synchronization of feedback-induced chaos in semiconductor ring lasers by injection-locking. Optik - International Journal for Light and Electron Optics, 125 (2014), 1950-1953. ]
  • [38] P. Gaspard: Microscopic chaos and chemical reactions. Physica A: Statistical Mechanics and its Applications, 263 (1999), 315-328.
  • [39] Q. S. Li and R. Zhu: Chaos to periodicity and periodicity to chaos by periodic perturbations in the Belousov-Zhabotinsky reaction. Chaos, Solitons & Fractals, 19 (2004), 195-201.
  • [40] M. Villegas, F. Augustin, A. Gilg, A. Hmaidi and U. Wever: Application of the polynomial chaos expansion to the simulation of chemical reactors with uncertainties. Mathematics and Computers in Simulation, 82 (2012), 805-817.
  • [41] M. Kyriazis: Applications of chaos theory to the molecular biology of aging.Experimental Gerontology, 26 (1991), 569-572.
  • [42] E. Carlen, R. Chatelin, P. Degond and B. Wennberg: Kinetic hierarchy and propagation of chaos in biological swarm models. Physica D: Nonlinear Phenomena, 260 (2013), 90-111.
  • [43] I. Suárez: Mastering chaos in ecology. Ecological Modelling, 117 (1999), 305-314.
  • [44] J. C. Sprott, J. A. Vano, J. C. Wildenberg, M. B. Anderson and J. K. Noel: Coexistence and chaos in complex ecologies. Physics Letters A, 335 (2005), 207-212.
  • [45] B. Sahoo and S. Poria: The chaos and control of a food chain model supplying additional food to top-predator. Chaos, Solitons & Fractals, 58 (2014), 52-64.
  • [46] K. Aihira, T. Takabe and M. Toyoda: Chaotic neural networks. Physics Letters A, 144 (1990), 333-340.
  • [47] G. He, Z. Cao, P. Zhu and H. Ogura: Controlling chaos in a chaotic neural network. Neural Networks, 16 (2003), 1195-1200.
  • [48] W. Z. Huang and Y. Huang: Chaos of a new class of Hopfield neural networks. Applied Mathematics and Computation, 206 (2008), 1-11.
  • [49] Y. Sun, V. Babovic and E. S. Chan: Multi-step-ahead model error prediction using time-delay neural networks combined with chaos theory. Journal of Hydrology, 395 (2010), 109-116.
  • [50] S. Lankalapalli and A. Ghosal: Chaos in robot control equations. International Journal of Bifurcation and Chaos, 7 (1997), 707-720.
  • [51] Y. Nakamura and A. Sekiguchi: The chaotic mobile robot. IEEE Transactions on Robotics and Automation, 17 (2001), 898-904.
  • [52] M. Islam and K. Murase: Chaotic dynamis of a behavior-based miniature mobile robot: effects of environment and control structure. Neural Networks, 18 (2005), 123-144.
  • [53] H. T. Yau and C. S. Shieh: Chaos synchronization using fuzzy logic controller. Nonlinear Analysis: Real World Applications, 9 (2008), 1800-1810.
  • [54] N. S. Pai, H. T. Yau and C. L. Kuo: Fuzzy logic combining controller design for chaos control of a rod-type plasma torch system. Expert Systems with Applications, 37 (2010), 8278-8283.
  • [55] Z. Shi, S. Hong and K. Chen: Experimental study on tracking the state of analog Chua’s circuit with particle filter for chaos synchronization. Physics Letters A, 372 (2008), 5575-5580.
  • [56] A. E. Matouk and H. N. Agiza: Bifurcations, chaos and synchronization in ADVP circuit with parallel resistor. Journal of Mathematical Analysis and Applications, 341 (2008), 259-269.
  • [57] A. E. Matouk: Chaos, feedback control and synchronization of a fractional-order modified autonomous Van der Pol-Duffing circuit. Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 975-986.
  • [58] J. C. Sprott: Elegant Chaos. Singapore, World Scientific, 2010.
  • [59] C. Li, X. Liao and K. W. Wong: Lag synchronization of hyperchaos with application to secure communications. Chaos, Solitons and Fractals, 23 (2005), 183-193.
  • [60] N. Smaoui, A. Karouma and M. Zribi: Secure communications based on the synchronization of the hyperchaotic Chen and the unified chaotic systems. Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 3279-3293.
  • [61] X. J. Wu, H. Wang and H. T. Lu: Hyperchaotic secure communication via generalized function projective synchronization. Nonlinear Analysis: Real World Applications, 12 (2011), 1288-1299.
  • [62] T. I. Chien and T. L. Liao: Design of secure digital communication systems using chaotic modulation, cryptography and chaotic synchronization. Chaos, Solitons & Fractals, 24 (2005), 241-245.
  • [63] B. Zhang, M. Chen and D. Zhou: Chaotic secure communication based on particle filtering. Chaos, Solitons & Fractals, 30 (2006), 1273-1280.
  • [64] X. Wu, C. Bai and H. Kan: A new color image cryptosystem via hyperchaos synchronization. Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 1884-1897.
  • [65] Q. Zhang, L. Guo and X. Wei: A novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Optik - International Journal for Light and Electron Optics, 124 (2013), 3596-3600.
  • [66] G. Ye and J. Zhou: A block chaotic image encryption scheme based on selfadaptive modelling. Applied Soft Computing, 22 (2014), 351-357.
  • [67] H. Liu, X. Wang and A. Kadir: Color image encryption using Choquet fuzzy integral and hyper chaotic system. Optik - International Journal for Light and Electron Optics, 124 (2013), 3257-3533.
  • [68] A. Buscarino, L. Fortuna and M. Frasca: Experimental robust synchronization of hyperchaotic circuits. Physica D: Nonlinear Phenomena, 238 (2009), 1917-1922.
  • [69] N. Yujun, W. Xingyuan, W. Mingjun and Z. Huaguang: A new hyperchaotic system and its circuit implementation. Communications in Nonlinear Science and Numerical Simulation, 15 (2010), 3518-3524.
  • [70] X. Wei, F. Yunfei and L. Qiang: A novel four-wing hyper-chaotic system and its circuit implementation. Procedia Engineering, 29 (2012), 1264-1269.
  • [71] P. Zhou and K. Huang: A new 4-D non-equilibrium fractional-order chaotic system and its circuit implementation. Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 2005-2011.
  • [72] O. E. Rössler: An equation for hyperchaos. Physics Letters A, 71 (1979), 155-157.
  • [73] Q. Jia: Hyperchaos generated from the Lorenz chaotic system and its control. Physics Letters A, 366 (2007), 217-222.
  • [74] A. Chen, J. Lu, J.Lü and S. Yu: Generating hyperchaotic Lü attractor via state feedback control. Physica A, 364 (2006), 103-110.
  • [75] X. Li: Modified projective synchronization of a new hyperchaotic system via nonlinear control. Communications in Theoretical Physics, 52 (2009), 274-278.
  • [76] J. Wang and Z. Chen: A novel hyperchaotic system and its complex dynamics. International Journal of Bifurcation and Chaos, 18 (2008), 3309-3324.
  • [77] D. Ghosh and S. Bhattacharya: Projective synchronization of new hyperchaotic system with fully unknown parameters. Nonlinear Dynamics, 61 (2010), 11-21.
  • [78] S. Vaidyanathan: A ten-term novel 4-D hyperchaotic system with three quadratic nonlinearities and its control. International Journal of Control Theory and Applications, 6 (2013), 97-109.
  • [79] G. Hu: Generating hyperchaotic attractors with three positive Lyapunov exponents via state feedback control. International Journal of Bifurcation and Chaos, 19 (2009), 651.
  • [80] Q. Yang and C. Chen: A 5D hyperchaotic system with three positive Lyapunov exponents coined. International Journal of Bifurcation and Chaos, 23 (2013), 1350109.
  • [81] Q. Jia: Hyperchaos generated from the Lorenz chaotic system and its control. Physics Letters A, 366 (2007), 217-222.
  • [82] V. Sundarapandian: Output regulation of the Lorenz attractor. Far East Journal of Mathematical Sciences, 42 (2010), 289-299.
  • [83] S. Vaidyanathan: Output regulation of Arneodo-Coullet chaotic system. Communications in Computer and Information Science, 131 (2011), 585-593.
  • [84] S. V Vaidyanathan: Output regulation of the unified chaotic system. Communications in Computer and Information Science, 198 (2011), 1-9.
  • [85] S. Vaidyanathan: Output regulation of the Liu chaotic system. Applied Mechanics and Materials, 110 (2012), 3982-3989.
  • [86] G. Chen: A simple adaptive feedback control method for chaos and hyper-chaos control. Applied Mathematics and Computation, 217 (2011), 7258-7264.
  • [87] S. Vaidyanathan: Adaptive controller and synchronizer design for the Qi- Chen chaotic system. Lecture Notes of the Institute for Computer Sciences, Social- Informatics and Telecommunication Engineering, 85 (2012), 124-133.
  • [88] V. Sundarapandian: Adaptive control and synchronization design for the Lu- Xiao chaotic system. Lecture Notes on Electrical Engineering, 131 (2013), 319-327.
  • [89] S. Vaidyanathan: Analysis, control and synchronization of hyperchaotic Zhou system via adaptive control. Advances in Intelligent Systems and Computing, 177 (2013), 1-10.
  • [90] J. Zheng: A simple universal adaptive feedback controller for chaos and hyperchaos control. Computers & Mathematics with Applications, 61 (2011), 2000-2004.
  • [91] W. Lin: Adaptive chaos control and synchronization in only locally Lipschitz systems. Physics Letters A, 372 (2008), 3195-3200.
  • [92] D. Q. Wei, X. S. Luo, B. Zhang and Y. H. Qin: Controlling chaos in spaceclamped FitzHugh-Nagumo neuron by adaptive passive method. Nonlinear Analysis: Real World Applications, 11 (2010), 1752-1759.
  • [93] M. T. Yassen: Chaos control of chaotic dynamical systems using backstepping design. Chaos, Solitons & Fractals, 27 (2006), 537-548.
  • [94] J. A. Laoye, U. E. Vincent and S. O. Kareem: Chaos control of 4D chaotic systems using recursive backstepping nonlinear controller. Chaos, Solitons & Fractals, 39 (2009), 356-362.
  • [95] D. Lin, X. Wang, F. Nian and Y. Zhang: Dynamic fuzzy neural networks modeling and adaptive backstepping tracking control of uncertain chaotic systems. Neurocomputing, 73 (2010), 2873-3881.
  • [96] S. Vaidyanathan: Sliding mode control based global chaos control of Liu-Liu- Liu-Su chaotic system. International Journal of Control Theory and Applications, 5 (2012), 15-20.
  • [97] S. Vaidyanathan: Global chaos control of hyperchaotic Liu system via sliding mode control. International Journal of Control Theory and Applications, 5 (2012), 117-123.
  • [98] H. Fujisaka and T. Yamada: Stability theory of synchronized motion in coupled-oscillator systems. Progress of Theoretical Physics, 69, 32-47, (1983).
  • [99] L. M. Pecora and T. L. Caroll: Synchronization in chaotic systems. Physical Review Letters, 64, 821-825, (1990).
  • [100] V. Sundarapandian and R. Karthikeyan: Anti-synchronization of hyperchaotic Lorenz and hyperchaotic Chen systems by adaptive control. International Journal of Signal System Control and Engineering Application, 4, 18-25, (2011).
  • [101] S. Vaidyanathan: Anti-synchronization of Sprott-I and Sprott-M chaotic systems via adaptive control. International Journal of Control Theory and Applications, 5, 41-59, (2012).
  • [102] V. Sundarapandian and R. Karthikeyan: Anti-synchronization of Lu and Pan chaotic systems by adaptive nonlinear control. International Journal of Soft Computing, 6, 111-118, (2011).
  • [103] V. Sundarapandian and R. Karthikeyan: Hybrid synchronization of hyperchaotic Lorenz and hyperchaotic Chen systems via active control. Journal of Engineering and Applied Sciences, 7, 254-264, (2012).
  • [104] R. Karthikeyan and V. Sundarapandian: Hybrid chaos synchronization of four-scroll systems via active control. Journal of Electrical Engineering, 65, 97-103, (2014).
  • [105] M. G. Rosenblum, A. S. Pikovsky and J. Kurths: From phase to lag synchronization in coupled chaotic oscillators. Physical Review Letters, 78, 4193-4196, (1997).
  • [106] M. G. Rosenblum, A. S. Pikovsky and J. Kurths: Phase synchronization of chaotic oscillators. Physical Review Letters, 76, 1804-1807, (1996).
  • [107] V. Astakhov, A. Shabunin and V. Anishchenko: Antiphase synchronization in symmetrically coupled self-oscillators. International Journal of Bifurcation and Chaos, 10, 849-857, (2000).
  • [108] N. F. Rulkov, M. M. Sushchik, L. S. Tsimring and H. D. I. Ababarnel: Generalized synchronization of chaos in directionally coupled chaotic systems. Physical Review E, 51, 980-994, (1995).
  • [109] R. Mainieri and J. Rehacek: Projective synchronization in threedimensional chaotic system. Physical Review Letters, 82, 3042-3045, (1999).
  • [110] P. Sarasu and V. Sundarapandian: The generalized projective synchronization of hyperchaotic Lorenz and hyperchaotic Qi systems via active control. International Journal of Soft Computing, 6, 216-223, (2011).
  • [111] P. Sarasu and V. Sundarapandian: Adaptive controller design for the generalized projective synchronization of 4-scroll systems. International Journal of Signal System Control and Engineering Application, 5, 21-30, (2012).
  • [112] S. Vaidyanathan and S. Pakiriswamy: Generalized projective synchronization of six-term Sundarapandian chaotic systems by adaptive control. International Journal of Control Theory and Applications, 6, 153-163, (2013).
  • [113] H. N. Agiza and M. T. Yassen: Synchronization of Rossler and Chen chaotic dynamical systems using active control. Physics Letters A, 278, 191-197, (2001).
  • [114] U. E. Vincent: Synchronization of identical and non-identical 4-D chaotic systems using active control. Chaos, Solitons and Fractals, 37, 1065-1075, (2008).
  • [115] B. A. Idowu, U. E. Vincent and A. N. Njah: Synchronization of chaos in nonidentical parametrically excited systems. Chaos, Solitons and Fractals, 39, 2322-2331, (2009).
  • [116] S. Vaidyanathan and K. Rajagopal: Hybrid synchronization of hyperchaotic Wang-Chen and hyperchaotic lorenz systems by active non-linear control. International Journal of Signal System Control and Engineering Application, 4, 55-61, (2011).
  • [117] V. Sundarapandian and R. Karthikeyan: Anti-synchronization of Lü and Pan chaotic systems by adaptive nonlinear control. European Journal of Scientific Research, 64, 94-106, (2011).
  • [118] V. Sundarapandian and R. Karthikeyan: Adaptive antisynchronization of Uncertain Tigan and Li Systems. Journal of Engineering and Applied Sciences, 7, 45-52, (2012).
  • [119] P. Sarasu and V. Sundarapandian: Generalized projective synchronization of three-scroll chaotic systems via adaptive control. European Journal of Scientific Research, 72, 504-522, (2012).
  • [120] S. Vaidyanathan and K. Rajagopal: Global chaos synchronization of hyperchaotic Pang and hyperchaoticWang systems via adaptive control. International Journal of Soft Computing, 7, 28-37, (2012).
  • [121] X. Tan, J. Zhang and Y. Yang: Synchronizing chaotic systems using backstepping design. Chaos, Solitons and Fractals, 16, 37-45, (2003).
  • [122] S. Rasappan and S. Vaidyanathan: Global chaos synchronization of WINDMI and Coullet chaotic systems by backstepping control. Far East Journal of Mathematical Sciences, 67, 265-287, (2012).
  • [123] S. Rasappan and S. Vaidyanathan: Hybrid synchronization of n-scroll Chua circuits using adaptive backstepping control design with recursive feedback. Malaysian Journal of Mathematical Sciences, 7, 219-226, (2013).
  • [124] R. Suresh and V. Sundarapandian: Global chaos synchronization of a family of n-scroll hyperchaotic Chua circuits using backstepping control with recursive feedback. Far East Journal of Mathematical Sciences, 73, 73-95, (2013).
  • [125] S. Rasappan and S. Vaidyanathan: Global chaos synchronization of WINDMI and Coullet chaotic systems using adaptive backstepping control design. Kyungpook Mathematical Journal, 54, 293-320, (2014).
  • [126] S. Vaidyanathan and S. Rasappan: Global chaos synchronization of nscroll Chua circuit and Lur’e system using backstepping control design with recursive feedback. Arabian Journal for Science and Engineering, 39, 3351-3364, (2014).
  • [127] D. Zhang and J. Xu: Projective synchronization of different chaotic timedelayed neural networks based on integral sliding mode controller. Applied Mathematics and Computation, 217, 164-174, (2010).
  • [128] V. Sundarapandian and S. Sivaperumal: Sliding controller design of hybrid synchronization of four-wing chaotic systems. International Journal of Soft Computing, 6, 224-231, (2011).
  • [129] S. Vaidyanathan: Global chaos control of hyperchaotic Liu system via sliding control method. International Journal of Control Theory and Applications, 5, 117-123, (2012).
  • [130] S. Vaidyanathan and S. Sampath: Anti-synchronization of four-wing chaotic systems via sliding mode control. International Journal of Automatic Computing, 9, 274-279, (2012).
  • [131] S. Vaidyanathan: Global chaos synchronisation of identical Li-Wu chaotic systems via sliding mode control. International Journal of Modelling, Identification and Control, 22 (2014), 170-177.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-239669ad-321d-4679-b402-880efcd5b30d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.