Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Objectives: This study aims to develop an advanced and efficient deep learning-based approach for the detection and segmentation of cell nuclei in microscopic images. By exploiting the U-Net architecture, this research helps to overcome the limitations of traditionally followed computational methods, enhancing the precision and scalability of biomedical image analysis. Methods: This research utilizes a deep learning model based on the U-Net architecture and is trained and evaluated for cell nuclei segmentation. The model was optimized by fine-tuning parameters, i.e., applying data augmentation techniques and employing performance metrics such as Intersection over Union (IoU) for evaluation. Comparisons were made with traditional segmentation techniques to assess improvements in accuracy, efficiency, and robustness. Results: This U-Net model demonstrated superior performance in segmenting cell nuclei compared to conventional methods. The results showed increased segmentation accuracy, lowering manual efforts, and enhanced reproducibility across different imaging datasets. The model's high IoU values confirmed its effectiveness in accurately identifying cell nuclei boundaries, making it a reliable tool for automated biomedical image analysis. Conclusions: The study highlights the effectiveness of the U-Net architecture in automated cell nuclei detection and segmentation, addressing challenges associated with manual analysis. Its scalability and adaptability extend its applicability beyond cell nuclei segmentation to other biomedical imaging tasks, offering significant potential for disease diagnosis, therapeutic development, and clinical decision-making. The findings reinforce the transformative impact of deep learning in biomedical research and healthcare applications.
Czasopismo
Rocznik
Tom
Strony
111--117
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
- Doctoral School of Medical and Health Sciences Jagiellonian University Collegium Medicum, Kraków, Poland
- The Center for Theranostics, Jagiellonian University, Kraków, Poland
- Department of Medical Physics, Jagiellonian University; prof. Stanisława Łojasiewicza str. 11, 30-348 Kraków, Poland
autor
- University of Bern and Inselspital, Clinic for Nuclear Medicines, Bern, Switzerland
autor
- Heart and Vascular Disease Clinics, Jagiellonian University Collegium Medicum Kraków, Poland
autor
- The Center for Theranostics, Jagiellonian University, Kraków, Poland
- Department of Medical Physics, Jagiellonian University, Kraków, Poland
Bibliografia
- 1. Siddique N, Sidike P, Elkin C, Devabhaktuni V. U-Net and its variants for medical image segmentation: A review of theory and applications. IEEE. 2021;9:82031-57. doi: https://doi.org/10.1109/access.2021.3086020.
- 2. Cooper GM. The Cell: A Molecular Approach. 2nd edition. Sunderland (MA): Sinauer Associates; 2000.
- 3. Fazary AE, Ju Y, Abd-Rabboh HS. How does chromatin package DNA within the nucleus and regulate gene expression?. Int. J. Biol. Macromol. 2017;101:862-81. doi: https://doi.org/10.1016/j.ijbiomac.2017.03.165.
- 4. Dubois ML, Boisvert FM. The nucleolus: Structure and function. In: Bazett-Jones DP, Dellaire G, editors. The Functional Nucleus. New York: Springer; 2016. pp. 29-49. doi: https://doi.org/10.1007/978-3-319-38882-3_2.
- 5. Rozwadowska N, Kolanowski T, Wiland E, Siatkowski M, Pawlak P, Malcher A, et al. Characterisation of nuclear architectural alterations during in vitro differentiation of human stem cells of myogenic origin. PLoS One. 2013;8(9):e73231. doi: https://doi.org/10.1371/journal.pone.0073231.
- 6. Janssen AFJ, Breusegem SY, Larrieu D. Current methods and pipelines for image-based quantitation of nuclear shape and nuclear envelope abnormalities. Cells. 2022; 11(3):347. doi: https://doi.org/10.3390/cells11030347.
- 7. Han X, Kapaldo J, Liu Y, Stack MS, Alizadeh E, Ptasinska S. Large-scale image analysis for investigating spatio-temporal changes in nuclear DNA damage caused by nitrogen atmospheric pressure plasma jets. Int. J. Mol. Sci. 2020;21(11): 4127. doi: https://doi.org/10.3390/ijms21114127.
- 8. Jevtić P, Edens LJ, Vuković LD, Levy DL. Sizing and shaping the nucleus: Mechanisms and significance. COCEBI. 2014;28:16-27. doi: https://doi.org/10.1016/j.ceb.2014.01.003.
- 9. Parada L, Misteli T. Chromosome positioning in the interphase nucleus. Trends Cell Biol. 2002;12(9):425-32. doi: https://doi.org/10.1016/s0962-8924(02)02351-6.
- 10. Federico C, Bruno F, Ragusa D, Clements CS, Brancato D, Henry MP, et al. Chromosomal rearrangements and altered nuclear organisation: Recent mechanistic models in cancer. Cancers. 2021;13(22):5860. doi: https://doi.org/10.3390/cancers13225860.
- 11. García Rojo M. State of the art and trends for digital pathology. Stud Health Technol Inform. 2012:179:15-28.
- 12. Katouzian A, Angelini ED, Carlier SG, Suri JS, Navab N, Laine AF. A state-of-the-art review on segmentation algorithms in intravascular ultrasound (IVUS) images. IEEE Transactions on Information Technology in Biomedicine. 2012;16(5):823-34. doi: https://doi.org/10.1109/TITB.2012.2189408.
- 13. Ram S, Nguyen VT, Limesand KH, Rodríguez JJ. Combined detection and segmentation of cell nuclei in microscopy images using deep learning. IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI). 2020 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI); 2020 March 29-31; Albuquerque, NM, USA. New Jersey: IEEE; 2020. p. 26-29. doi: https://doi.org/10.1109/ssiai49293.2020.9094614.
- 14. Mitra S, Das N, Dey S, Chakrabarty S, Nasipuri M, Naskar MK. Cytology image analysis techniques towards automation: Systematically revisited. 2020; arXiv:2003.07529. doi: https://doi.org/10.48550/arxiv.2003.07529.
- 15. kaggle.com [Internet] Kaggle: Data Science Community and Competitions. 2024 [cited 2024 Oct 18]. Available from: https://www.kaggle.com/.
- 16. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. Lect. Notes Comput. Sci. 2015; 9351:234-41. doi: https://doi.org/10.1007/978-3-319-24574-4_28.
- 17. Rayed ME, Islam SMS, Niha SI, Jim JR, Kabir MM, Mridha MF. Deep learning for medical image segmentation: State-of-the-art advancements and challenges. Inform. Med. Unlocked. 2024;47:101504. doi: https://doi.org/10.1016/j.imu.2024.101504.
- 18. Awasthi K, Rathod N. Advanced deep learning techniques for automated cell nuclei segmentation in biomedical images. RODBUK 2024, Jagiellonian University in Kraków. doi: https://doi.org/10.57903/UJ/ID54W4.
- 19. Madhu G, Meher Bonasi A, Kautish S, Almazyad AS, Mohamed AW, Werner F, et al. UCapsNet: A Two-Stage Deep Learning Model Using U-Net and Capsule Network for Breast Cancer Segmentation and Classification in Ultrasound Imaging. Cancers. 2024;16(22):3777. doi: https://doi.org/10.3390/cancers16223777.
- 20. Mizusawa S, Sei Y, Orihara R, Ohsuga A. Computed tomography image reconstruction using stacked U-Net. Comput Med Imaging Graph. 2021;90:101920. doi: https://doi.org/10.1016/j.compmedimag.2021.101920.
- 21. Tang Q, Ratnayake R, Seabra G, Jiang Z, Fang R, Cui L, et al. Morphological profiling for drug discovery in the era of deep learning. Brief Bioinform. 2024;25(4):bbae284. doi: https://doi.org/10.1093/bib/ bbae284.
- 22. Okumura N, Nishikawa T, Imafuku C, Matsuoka Y, Miyawaki Y, Kadowaki S, et al. U-Net Convolutional Neural Network for Real-Time Prediction of the Number of Cultured Corneal Endothelial Cells for Cellular Therapy. Bioengineering. 2024;11(1):71. doi: https://doi.org/10.3390/bioengineering11010071.
- 23. Mohammed Mota S, Rogers RE, Haskell AW, McNeill EP, Kaunas R, Gregory CA, et al. U-Net based image segmentation of mesenchymal stem cells. Proc. SPIE 11647, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XIX, 2021;116470V. doi: https://doi. org/10.1117/12.2575768.
- 24. Höfener H, Homeyer A, Weiss N, Molin J, Lundström CF, Hahn HK. Deep learning nuclei detection: A simple approach can deliver state-of-the- -art results. Comput. Med. Imaging Graph. 2018;70:43-52. doi: https://doi.org/10.1016/j.compmedimag.2018.08.010.
- 25. Stępień E, Durak-Kozica M, Moskal P. Extracellular vesicles in vascular pathophysiology: Beyond their molecular content. Pol Arch Intern Med. 2023;133(4):1-7. doi: https://doi.org/10.20452/pamw.16483.
- 26. Stępień E, Rząca C, Moskal P. Novel biomarker and drug delivery systems for theranostics - extracellular vesicles. Bio-Algorithms and Med-Systems. 2021;17(4):301-9. doi: https://doi.org/10.1515/bams-2021-0183.
- 27. Tsuzuki Y, Sanami S, Sugimoto K, Fujita S. Pseudo-nuclear staining of cells by deep learning improves the accuracy of automated cell counting in a label-free cellular population. J. Biosci. Bioeng. 2021;131(2):213-8. doi: https://doi.org/10.1016/j.jbiosc.2020.09.014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2396227f-eaa0-4987-b15f-0352a50131fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.