PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Controlling magnetic inductance by air-gap configuration in power electronics applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gapped magnetic components are inherent to applications where conversion of power would force magnetic flux density beyond the saturation point of magnetic materials. A physical discontinuity in a magnetic path, which an air gap represents, signifies a drastic change in its reluctance to magnetic flux. This gives rise to a phenomenon referred to as the fringing effect, which impacts the performance of magnetic components. The fringing flux also affects the physical properties of magnetic components, such as magnetic reluctance and inductance. Since inductance of gapped magnetic components is a function of the size of the air gap, a relatively simple change to the configuration of the air gap or splitting a single gap into a plurality of gaps entails, frequently, a radical change to the magnetic circuit of the component. This paper examines the way the air-gap configuration affects the distribution of the fringing flux and, by extension, magnetic reluctance and inductance. A method to aid the design of multigap inductors is presented based on 3-D electromagnetic modelling as well as measurements. An analytic expression, which closely approximates the required length of quasi-distributed gaps substituting a single gap, is developed.
Rocznik
Strony
677--695
Opis fizyczny
Bibliogr. 24 poz., fig., tab., wz.
Twórcy
  • Institute of Electronics, Lodz University of Technology, 93-590 Lodz, Poland
Bibliografia
  • [1] Jung J.H., Bifilar Winding of a Center-Tapped Transformer Including Integrated Resonant Inductance for LLC Resonant Converter, IEEE Transactions on Power Electronics, vol. 28, no. 2, pp. 615–620 (2013), DOI: 10.1109/TPEL.2012.2213097.
  • [2] Moradewicz A.J., Kazmierkowski M.P., High efficiency contactless energy transfer system with power electronic resonant converter, Archives of Electrical Engineering, vol. 57, no. 4, pp. 375–381 (2009), DOI: 10.2478/v10175-010-0141-0.
  • [3] Kaiser K.L., Magnetic Materials and a Few Devices, in Electromagnetic Compatibility Handbook, 1sted., CRC Press (2004).
  • [4] Yang R.S., Hanson A.J., Reese B.A., Sullivan C.R., Perreault D.J., A low-loss inductor structure and design guidelines for high-frequency applications, IEEE Transactions on Power Electronics, vol. 34, no. 10, pp. 9993–10005 (2019), DOI: 10.1109/TPEL.2019.2892397.
  • [5] Jez R., Influence of the distributed air gap on the parameters of an industrial inductor, IEEE Transactions on Magnetics, vol. 53, no. 11 (2017), DOI: 10.1109/TMAG.2017.2699120.
  • [6] Tian Y., Li Y., Liu J., Fringing Field Analytical Calculation of High Frequency Planar Magnetic Components, CPSS Transactions on Power Electronics and Applications, vol. 7, no. 3, pp. 251–258 (2022), DOI: 10.24295/CPSSTPEA.2022.00023.
  • [7] Keerthi Sudha B.V.K.S.L., Sirija R., Sravan Kumar V.S., Analysis of Impact of Fringing on Design of Inductors with Air Gaps, in 2022 IEEE 19th India Council International Conference (INDICON), Kochi, India (2022).
  • [8] Colonel W., McLyman T., Fundamentals of Magnetics, in Transformer and Inductor Design Handbook, Design Handbook, 4th ed., CRC Press (2011).
  • [9] Simpson N., Mellor P.H., Additive manufacturing of shaped profile windings for minimal AC loss in gapped inductors, in 2017 IEEE International Electric Machines and Drives Conference (IEMDC), Miami, FL, USA (2017).
  • [10] Pollock J.D., Sullivan C.R., Gapped-inductor foil windings with low AC and DC resistance, in Conf. Record of the 2004 IEEE Industry Applications Conference, Seattle, WA, USA (2004).
  • [11] Barlik R., Nowak M., Grzejszczak P., Zdanowski M., Analytical description of power losses in a transformer operating in the dual active bridge converter, Archives of Electrical Engineering, vol. 64, no. 3, pp. 561–574 (2016), DOI: 10.1515/bpasts-2016-0063.
  • [12] Wang C.-M., Seto K., Yoon S., Nomura T., Planar inductor with quasi-distributed gap core and busbar based planar windings, in 2013 IEEE Energy Conversion Congress and Exposition (ECCE), Denver, USA (2013).
  • [13] Hu J., Sullivan C.R., AC resistance of planar power inductors and the quasi-distributed gap technique, IEEE Transactions on Power Electronics, vol. 16, no. 4, pp. 558–567 (2001), DOI: 10.1109/63.931082.
  • [14] Kasikowski R., Więcek B., Fringing-Effect Losses in Inductors by Thermal Modelling and Thermographic Measurements, IEEE Transactions on Power Electronics, vol. 36, no. 9, pp. 9772–9786 (2021), DOI: 10.1109/TPEL.2021.3058961.
  • [15] Akbari M., Rezaei-Zare A., Cheema M.A.M., Kalicki T., Air Gap Inductance Calculation for Transformer Transient Model, IEEE Transactions on Power Delivery, vol. 36, no. 1, pp. 492–494 (2021), DOI: 10.1109/TEC.2020.3009818.
  • [16] Hao S., Zhang Z., Li J., Han J., Analysis of Distributed Air Gap Parameters of Differential Mode Inductor Considering Core Loss and Saturation, in 2019 22nd International Conference on Electric Machines and Systems (ICEMS), Harbin, China (2019).
  • [17] Ferroxcube Data Handbook, Soft Ferrites and Accessories, Ferroxcube, pp. 257, 270, 831 (2013).
  • [18] Balakrishnan A., Joines W.T., Wilson T.G., Air-Gap Reluctance and Inductance Calculations for Magnetic Circuits Using a Schwarz–Christoffel Transformation, IEEE Transactions on Power Electronics, vol. 12, no. 4, pp. 654–663 (1997), DOI: 10.1109/63.602560.
  • [19] Roshen W.A., Fringing Field Formulas and Winding Loss Due to an Air Gap, IEEE Transactions on Magnetics, vol. 43, no. 8, pp. 3387–3394 (2007), DOI: 10.1109/TMAG.2007.898908.
  • [20] Hurley W.G., Wölfle W.H., Transformers and inductors for power electronics: theory, design and applications, John Wiley and Sons Ltd. (2013).
  • [21] COMSOL, COMSOL Multiphysics Reference Manual, version: COMSOL 5.2a.
  • [22] Ferroxcube Data Handbook, Soft Ferrites and Accessories, Ferroxcube, pp. 123–124 (2013).
  • [23] Kasikowski R., Spriddell D., Howes G., Evaluating Fringing Effects in Multi Gapped Toroids, Bodo’s Power Systems, pp. 22–24 (2018).
  • [24] Neumayr D., Bortis D., Kolar J.W., Hoffmann S., Hoene E., Origin and quantification of increased core loss in MnZn ferrite plates of a multi-gap inductor, CPSS Transactions on Power Electronics and Applications, vol. 4, no. 1, pp. 72–93 (2019), DOI: 10.24295/CPSSTPEA.2019.00008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-238b8d81-9ae5-415d-b9af-26114dd911c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.