Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The ratio of the magnetic moment and charge of a proton when multiplied by the viscosity of water results in forces that when applied over the distance of O-H bonds provides quantum increments in the order of 10-20 J. Precise coefficients of this order of magnitude are consistent with the mechanisms associated with proton (H+) mobility and duration of the hydronium atom. When applied to aggregate properties of water that involve exclusion zones defined by boundaries containing marked proton density and coherent domains within which specific patterns of applied magnetic fields can be contained for protracted periods, these intrinsic properties suggest that the major features of the cell plasma membrane and living systems can be accommodated by proton movements within water. Water exposed in the dark to weak magnetic fields displayed a ~10 nm shift in peak wavelength as measured by a fluorescence spectrophotometer. Given the persistent emergence of 10-20 J as a functional unit of energy across the universe, the physical significance of the interaction between weak, temporally patterned magnetic fields and the organization of water within astronomical and abiogenic contexts may have been underestimated.
Rocznik
Tom
Strony
1--10
Opis fizyczny
Bibliogr. 24 poz., wykr., wz.
Twórcy
autor
- Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
Bibliografia
- [1] Sir W. Ramsay, F. G. Donnan, Text-Books of Physical Chemistry: A System of Physical Chemistry. Longmans, Green and Co. 1921.
- [2] M. A. Persinger, Current Medicinal Chemistry 17 (2010) 3094-3098.
- [3] T. E. Decoursey, Physiology Reviews 83 (2003) 475-579.
- [4] M. A. Persinger, B. T. Dotta, K. S. Saroka, World Journal of Neuroscience 3 (2013) 10-16.
- [5] M. A. Persinger, B. T. Dotta, K. S. Saroka, M. A. Scott, Journal of Consciousness Exploration & Research 4 (2013) 1-14.
- [6] B. T. Dotta, N. J. Murugan, L. M, Karbowski, M. A. Persinger, International Journal of Physical Sciences 8 (2013) 1783-1787.
- [7] J. DeMeo, Water 3 (2011) 1-47.
- [8] G. H. Pollack, Advances in Colloid and Interface Science 103 (2013) 173-196.
- [9] B-h. Chai, J-m Zheng, Q. Zhao, G. H. Pollock, Journal of Physical Chemistry 112 (2008) 2242-2247.
- [10] C. R. House, Water Transport in Cells and Tissues. Edward Arnold Ltd, London, 1974.
- [11] N. J. Murugan, L. M. Karbowski, R. M. Lafrenie, M. A. Persinger, manuscript in submission, 2013.
- [12] N. J. Murugan, L. K. Karbowski, R. M. Lafrenie, M. A. Persinger, PLOS ONE 8 (2013) e6174. doi: 10.371/journal.pone.0061714.
- [13] M. A. Persinger, S. A. Koren, International Journal of Neurosciences 117 (2007) 157-175.
- [14] E. Del-Giudice, Journal of Biological Physics 20 (1994) 105-116.
- [15] M. A. Persinger, Journal of Physics, Astrophysics and Physical Cosmology 3 (2009) 1-3.
- [16] L-C. Tu, J. Luo, G. T. Gillies, Reports on Progress in Physics 68 (2005) 77-130.
- [17] M. A. Persinger, The Open Astronomy Journal 2 (2012) 125-128.
- [18] H. Shibai, T. Maihara, Progress in Theoretical Physics 69 (1983) 77-88.
- [19] A. Neronov, I. Vovk, Science 328 (2010) 73-75.
- [20] J. Hofmann, M. Krug, N. Ortegel, L. Gerard, M. Weber, W. Rosenfeld, H. Weinfurter, Science 337 (2012) 72-75.
- [21] B. Pakkenberg, H. J. G. Gundersen, Journal of Comparative Neurology 384 (1997) 312-320.
- [22] M. A. Persinger, International Letters of Chemistry, Physics and Astronomy 8 (2013) 8-19.
- [23] M A. Persinger, C. Lavallee, Journal of Consciousness Studies 19 (2012) 128-153.
- [24] R. Llinas, U. Ribardy, Proceedings of the National Academy of Sciences 90 (1993) 2078-2081.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-237ff459-eb61-4787-bf1d-287e3573db2d