Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The flow of a ferrofluid due to a rotating disk in the presence of a non-uniform magnetic field in the axial direction is studied through mathematical modeling of the problem. Contour and surface plots in the presence of 10 kilo-ampere/meter, 100 kilo-ampere/meter magnetization force are presented here for radial, tangential and axial velocity profiles, and results are also drawn for the magnetic field intensity. These results are compared with the ordinary case where magnetization force is absent.
Rocznik
Tom
Strony
273--283
Opis fizyczny
Bibliogr. 27 poz., rys., wykr.
Twórcy
autor
- Department of Mathematics, College of Engineering Studies University of Petroleum and Energy Studies Dehradun, INDIA
autor
- Department of Mathematics, College of Engineering Studies University of Petroleum and Energy Studies Dehradun, INDIA
Bibliografia
- [1] Feynman R.P., Leighton R.B. and Sands M. (1963): Lecturers on Physics. – Addison-Wesley Reading, MA 1.
- [2] Shliomis M.I. (2004): Ferrofluids as thermal ratchets. – Physical Review Letters, vol.92, No.18, 188901.
- [3] Odenbach S. (2002): Magneto Viscous Effects in Ferrofluids. – Berlin: Springer-Verlag.
- [4] Neuringer J.L. and Rosensweig R.E. (1964): Magnetic fluids. – Physics of Fluids, vol.7, 1927.
- [5] Verma P.D.S. and Singh M. (1981): Magnetic fluid flow through porous annulus. – Int. J. Non-Linear Mechanics, vol.16, No.3/4, pp.371-378.
- [6] Verma P.D.S. and Vedan M.J. (1979): Steady rotation of a sphere in a paramagnetic fluid. – Wear, vol.52, pp.201-218.
- [7] Verma P.D.S. and Vedan M.J. (1978): Helical flow of ferrofluid with heat conduction. – Jour. Math. Phy. Sci., vol.12, No.4, pp.377-389.
- [8] Rosensweig R.E. (1985): Ferrohydrodynamics. – Cambridge University Press.
- [9] Schlichting H. (1960): Boundary Layer Theory. – New York: McGraw-Hill Book Company.
- [10] Karman V. (1921): Uber laminare and turbulente Reibung. – Z. Angew. Math. Mech. I, pp.232-252.
- [11] Cochran W.G. (1934): The flow due to a rotating disc. – Proc. Camb. Phil. Sot., vol.30, pp.365-375.
- [12] Benton E.R. (1966): On the flow due to a rotating disk. – J. Fluid Mech., vol.24, No.4, pp.781–800.
- [13] Attia H.A. (1998): Unsteady MHD flow near a rotating porous disk with uniform suction or injection. – Journal of Fluid Dynamics Research, vol.23, pp.283-290.
- [14] Mithal K.G. (1961): On the effects of uniform high suction on the steady flow of a non-Newtonian liquid due to a rotating disk. – Quart J. Mech. and Appl. Math. XIV, pp.401–410.
- [15] Attia H.A. and Aboul-Hassan A.L. (2004): On hydromagnetic flow due to a rotating disk. – Applied Mathematical Modelling, vol.28, pp.1007-1014.
- [16] Venkatasubramanian S. and Kaloni P.N. (1994): Effect of rotation on the thermo-convective instability of a horizontal layer of ferrofluids. – International Journal of Engineering Sciences, vol.32, No.2, pp.237-256.
- [17] Belyaev A.V. and Simorodin B.L. (2009): Convection of a ferrofluid in an alternating magnetic field. – Jour. of Applied Mechanics and Technical Physics, vol.50, No.4, pp.558-565.
- [18] Sekar R., Vaidyanathan G. and Ramanathan A. (1993): The ferroconvection in fluid saturating a rotating densely packed porous medium. – International Journal of Engineering Sciences, vol.31, No.2, pp.241-250.
- [19] Attia H. (2009): Steady flow over a rotating disk in porous medium with heat transfer. – Nonlinear Analysis: Modelling and Control, vol.14, No.1, pp.21–26.
- [20] Frusteri F. and Osalusi E. (2007): On MHD and slip flow over a rotating porous disk with variable properties. – Int. Comm. in Heat and Mass Transfer, vol.34, pp.492-501.
- [21] Paras Ram, Anupam Bhandari, Kushal Sharma.
- [22] Sunil, Divya and Sharma R.C. (2005): The effect of magnetic field dependent viscosity on thermosolutal convection in a ferromagnetic fluid saturating a porous medium. – Transport in Porous Media, vol.60, pp.251-274.
- [23] Sunil, Sharma A., Shandil R.G. and Gupta U. (2005): Effect of magnetic field dependent viscosity and rotation on ferroconvection saturating a porous medium in the presence of dust particles. – International Communication in Heat and Mass Transfer, vol.32, pp.1387-1399.
- [24] Sunil, Bharti P.K., Sharma D. and Sharma R.C. (2004): The effect of a magnetic field dependent viscosity on the thermal convection in a ferromagnetic fluid in a porous medium. – Zeitschrift fur Naturforschung, vol.59a, pp.397-406.
- [25] Nanjundappy C.E., Shivakumara I.S. and Arunkumar R. (2010): Benard-Marangoni ferroconvection with magnetic field dependent viscosity. – Journal of Magnetism and Magnetic Materials, vol.322, pp.2256-2263.
- [26] Ram P., Bhandari A. and Sharma K. (2010): Effect of magnetic field-dependent viscosity on revolving ferrofluid. – Journal of Magnetism and Magnetic Materials, vol.322, No.21, pp.3476-3480.
- [27] Ram P. and Bhandari A. (2013): Negative viscosity effects on ferrofluid flow due to a rotating disk. – Int. Journal of Applied Electromagnetics and Mechanics, vol.41, No.3, pp.467-478.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-237e640e-a44d-47d3-bd88-dc96e6a98602