PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fatigue life estimation for selected materials in multiaxial stress states with mean stress

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes a model for estimating fatigue life under multiaxial stress states, based on critical plane concepts, taking into account the effect of mean shear stress. The fatigue life test results calculated on the basis of the proposed model are compared to the experimental ones related to 2017A-T4 and 6082-T6 aluminium alloy, S355J0 alloy steel under constant-amplitude bending, torsion and proportional combinations of bending and torsion; Ti-6Al-4V alloy under tension-compression, torsion and combination tension-compression – torsion. For the results obtained, statistical analysis is performed by comparing the calculation results proposed by Findley and Dang Van criteria with the experimental data.
Słowa kluczowe
Rocznik
Strony
385--396
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
  • Opole University of Technology, Opole, Poland
autor
  • Opole University of Technology, Opole, Poland
Bibliografia
  • 1. Araujo J.A., Carpinteri A., Ronchei C., 2014, An alternative definition of the shear stress amplitude based on the Maximum Rectangular Hull method and application to the C-S (Carpinteri- -Spagnoli) criterion, Fatigue and Fracture of Engineering Materials and Structures, 37, 7, 764-771
  • 2. Carpinteri A., Spagnoli A., Vantadori S., 2011, Multiaxial assessment using a simplified critical plane-based criterion, International Journal of Fatigue, 33, 969-976
  • 3. Carpinteri A., Spagnoli A., Vantadori S., 2014, Reformulation in the frequency domain of a critical plane-based multiaxial fatigue criterion, International Journal of Fatigue, 67, 55-61
  • 4. Carpinteri A., Spagnoli A., Vantadori S., Bagni C., 2013, Structural integrity assessment of metallic components under multiaxial fatigue: the C-S criterion and its evolution, Fatigue and Fracture of Engineering Materials and Structures, 36, 870-883
  • 5. Dang Van K., 1983, Macro-micro approach in high-cycle multiaxial fatigue, American Society for Testing and Materials, STP 1191, 120-130
  • 6. Fatemi A., Socie D.F., 1998, A critical plane approach to multiaxial fatigue damage including out-of-phase loading, Fatigue and Fracture of Engineering Materials and Structures, 11, 3, 149-165
  • 7. Findley W.N., 1959, A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending, Journal of Engineering for Industry, 301-306
  • 8. Froustey C., Lasserre S., 1989, Multiaxial fatigue endurance of 30NCD16 steel, International Journal of Fatigue, 11, 3, 169-175
  • 9. Kallmeyer A.R., Krgo A., Kurath P., 2001, Multiaxial fatigue life prediction methods for notched bars of Ti-6Al-4V, Proceedings of the 6th National Turbine Engine High Cycle Fatigue Conference, Jacksonville
  • 10. Karolczuk A., Kluger K., 2014, Analysis of the coefficient of normal stress effect in chosen multiaxial fatigue criteria, Theoretical and Applied Fracture Mechanics, 73, 39-47, doi: 10.1016/j.tafmec.2014.07.015
  • 11. Karolczuk A., Macha E., 2008, Selection of the critical plane orientation in two-parameter multiaxial fatigue failure criterion under combined bending and torsion, Engineering Fracture Mechanics, 75, 389-403
  • 12. Kenmeugne B., Soh Fotsing B.D., Anago G.F., Fogue M., Robert J.-L., Kenne J.-P., 2012, On the evolution and comparison of multiaxial fatigue criteria, International Journal of Engineering and Technology, 4, 1, 37-46
  • 13. Kluger K., 2015, Fatigue life estimation for 2017A-T4 and 6082-T6 aluminium alloys subjected to bending-torsion with mean stress, International Journal of Fatigue, 80, 22-29, doi: 10.1016/j.ijfatigue.2015.05.005
  • 14. Kluger K., Łagoda T., 2004, Application of the Dang-Van criterion for life determination under uniaxial random tension-compression with different mean values, Fatigue and Fracture of Engineering Materials and Structures, 27, 505-512
  • 15. Kluger K., Łagoda T., 2013, Fatigue life of metallic material estimated according to selected models and load conditions, Journal of Theoretical and Applied Mechanics, 51, 3, 581-592
  • 16. Kluger K., Łagoda T., 2014, New energy model for fatigue life determination under multiaxial loading with different mean values, International Journal of Fatigue, 66, 229-245
  • 17. Krgo A., Kallmeyer A.R., Kurath P., 2000, Evaluation of HCF multiaxial fatigue life prediction methodologies for Ti-6Al-4V, Proceedings of the 5th National Turbine Engine High Cycle Fatigue Conference, Arizona
  • 18. Łagoda T., Ogonowski P., 2005, Criteria of multiaxial random fatigue based on stress, strain and energy parameters of damage in the critical plane, Mat.-wiss. u. Werkstofftech, 36, 9, 429-437
  • 19. Macha E., 1989, Generalization of fatigue fracture criteria for multiaxial sinusoidal loadings in the range of random loadings, [In:] Biaxial and Multiaxial Fatigue, EGF 3, M.W. Brown and K.J. Miller (Edit.), Mechanical Engineering Publications, London, 425-436
  • 20. Matake T., 1977, An explanation on fatigue limit under combined stress, Bulletin of the JSME, 20, 257-263
  • 21. McDiarmid D.L., 1994, A shear-stress based critical-plane criterion of multiaxial fatigue failure for design and life estimation, Fatigue and Fracture of Engineering Materials and Structures, 17, 12, 1475-1484
  • 22. Morel F., 2000, A critical plane approach for life estimation of high cycle fatigue under multiaxial variable amplitude loading, International Journal of Fatigue, 22, 2, 101-119
  • 23. Niesłony A., Łagoda T., Walat K., et al., 2014, Multiaxial fatigue behaviour of AA6068 and AA2017A aluminium alloys under in-phase bending with torsion loading condition, Mat.-wiss. u. Werkstofftech, 45, 10, 947-952
  • 24. Papadopoulos I.V., 2001, Long life fatigue under multiaxial loading, International Journal of Fatigue, 23, 831-849
  • 25. Papadopoulos I.V., Davoli P., Gorla C., Filippini M., Bernasconi A., 1997, A comparative study of multiaxial high-cycle fatigue criteria for metals, International Journal of Fatigue, 19, 3, 219-235
  • 26. Papadopoulos I.V., Panoskaltsis V.P., 1996, Invariant formulation of a gradient dependent multiaxial high-cycle fatigue criterion, Engineering Fracture Mechanics, 55, 4, 513-528
  • 27. Papuga J., 2011, A survey on evaluating the fatigue limit under multiaxial loading, International Journal of Fatigue, 33, 153-165
  • 28. Pawliczek R., 2000, Fatigue Fracture Plane Orientation Under Combined Bending and Torsion for 18G2A Steel, Opole University of Technology, Faculty of Mechanical Engineering, Opole, Poland
  • 29. Sines G., 1959, Behaviour of metals under complex static and alternating stresses, [In:] Metal Fatigue, Sines G., Waisman J.L. (Edit.), New York, McGraw-Hill, 5-14
  • 30. Smith J.O., 1939, The effect of range of stress on the torsional fatigue strength of steels, Bulletin Series No. 316, Engineering Experiment Station, University of Illinois
  • 31. Smith J.O., 1942, The effect of range of stress on the torsional fatigue strength of metals, Bulletin Series No. 334, Engineering Experiment Station, University of Illinois
  • 32. Sutherland H.J., Veers P.S., 2000, The development of confidence limits for fatigue strength data, Wind Energy, ASME/AIAA
  • 33. Walat K., Kurek M., Ogonowski P., Łagoda T., 2012, The multiaxial random fatigue criteria based on strain and energy damage parameters on the critical plane for the low-cycle range, International Journal of Fatigue, 37, 100-111
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2376587f-3f7c-4d1f-8462-0e8ed7411fec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.