Tytuł artykułu
Identyfikatory
Warianty tytułu
Factors influencing the effectiveness of the vertical air terminals in intercepting downward lightning discharges
Języki publikacji
Abstrakty
W artykule przeanalizowano najważniejsze czynniki wpływające na skuteczność zwodów pionowych w przechwytywaniu odgórnych wyładowań atmosferycznych. Określono wpływ m.in.: parametrów lidera skokowego, wytrzymałości dielektrycznej powietrza oraz ukształtowania terenu wokół obiektów naziemnych. Rozważania oparto przede wszystkim na danych uzyskanych z literatury, ale także badań laboratoryjnych i komputerowych badań symulacyjnych.
The article analyzes the most important factors influencing the effectiveness of vertical air terminals in intercepting downward lightning strikes. The impact of, among others, the parameters of the step leader, air dielectric strength and the shape of the terrain around ground objects was examined. The considerations were based primarily on the data obtained from the literature, as well as laboratory tests and computer simulation tests.
Wydawca
Czasopismo
Rocznik
Tom
Strony
3--10
Opis fizyczny
Bibliogr. 30 poz., il., rys., zdj.
Twórcy
autor
- Wydział Elektryczny Politechniki Warszawskiej
autor
- Wydział Elektryczny Politechniki Warszawskiej
autor
- Wydział Elektryczny Politechniki Warszawskiej
Bibliografia
- [1] Barevalo L., 2008. Breakdown Effect on Long Gaps under Switching Impulses Statistical Variation. 29th Int Conference on Lightning Protection. ICLP 2008.
- [2] Baba Y., V.A. Ralcov. 2007. Elctromagnetic models of lightning return stroke. Journal of Geophysical Research, 112.
- [3] Barry J. 1980. Bali Lightning and Bead Lightning: Extreme Forms of Atmospheric Electricity. Springer.
- [4] Berger K., R.B. Anderson, H. Knoninger. 1975. Parameters of lightning flashes Electra, 41.
- [5] Cooray V., V. Rakov, N. Theethayi. 2007. The lightning strildng distance - Revisited. Journal of Electrostatics, 65: 296-306.
- [6] Dellera L., E. Garbagnati. 1989. Lightning stroke simulation by means of the leader progression model - Part I - Description of the model and evaluation of exposure of free-standing structures. IEEE/PES 1989 Summer Meeting, Long Beach, California.
- [7] Dellera L., E. Garbagnati. 1989. Lightning stroke simulation by means of the leader progresion model - Part H: Exposure and shielding failure evaluation of overhead lines with assessment of application graphs. IEEE/PES 1989 Summer Meeting, Long Beach, California
- [8] Eriksson A.J. 1979. The lightning ground flash - an engineering study, in Faculty of Engineering. University of Natal: Pretoria.
- [9] Flisowski Z. 2005. Technika Wysokich Napięć. Warszawa: WNT.
- [10] Fofana I., A. Beroual. 2004. A Quantitative Study of Lightning Striking Distance Factors. 27th Int. Conference on Ughtning Protection. ICLP 2004.
- [11] Gallimberti I. 1972. The machanism of long spark formation. Journal Physique Coll. Supp. 7 40,C7:193-250.
- [12] Golde R.H. 1973. Lightning Protection. Wielka Brytania: Wydawnictwo Edward Arnold.
- [13] Grzybowski S., G. Gao. 2000. Laboratory study of Franklin rod height Impact on striking distance p. 334, 25th Int. Conference on Lightning Protection.: ICLP 2000.
- [14] Jakubowski J.L. 1957. Piorun ujarzmiony. Warszawa: Wiedza Powszechna.
- [15] Jakubowski J.L 1968. Podstawy teorii przepięć w układach energoelektrycznych. Warszawa: PWN.
- [16] Kern A., C. Schelthoff, M. Mathieu. 2010. Probability of lightning strikes to air-terminations of structures using the electro-geometrical model theory and the statistics of lightning current parameters. 30th Int. Conference on Lightning Protection. Cagliari, Italy.
- [17] Kosztaluk R. 1985. Technika badań wysokonapięciowych. Vol. Tom 1 i 2., Warszawa: WNT.
- [18] Les Renardies G.1981. Negative discharges in long air gaps. Electra 74.
- [19] Les Renardies G.1977. Positive discharges in long air gaps - 1975 results and conclusions. Electra 53: 31-132.
- [20] Les Renardies G. 1974. Research on long air gap discharges - 1973 results. Electra, 35:47-155.
- [21] Les Renardies G. 1972. Research on long air gap discharges at Les Renardieres. Electra, 73: 53-157.
- [22] Les Renardies and Group. 1977. Positive discharges in long air gaps at Les Renardies,1975 results and conclusions. Electra, 53.
- [23] PKN, PN-F.N 62305-1:2011 - Ochrona odgromowa - Część 1: Zasady ogólne. 2011.
- [24] Rakov V.A., M.A. Uman. 2003. Lightning: Physics and Effects. Cambridge University Press.
- [25] Rakov V.A. 2000. Lightning properties from triggered-lightning experiments at Camp Blanding, Florida (1997-1999) p. 54, in 25th Int. Conference on Lightning Protection. 2000: ICLP 2000.
- [26] Sul P., Z. Flisowski, Ł. Kolimas. 2016. Simulation studies of electric field distribution in the evaluation of the influence of neighboring conductive infrastructure on field conditions over air terminals, Proceedings of 2016 17th International Conference Computational Problems of Electrical Engineering, CPEE 2016.
- [27] Sul P., B. Kuca, Z. Flisowski, C. Mazzetti. 2015. Factors affecting the assessment of the selecdvity of lightning impact for dimensioning the areas protected by air terminals - XXIII International Conference on Electromagnetic Disturbances, Białystok, Poland.
- [28] Sul P. 2013. Field computational method as a tool for modificadon of lightning protective zones. Electrical Review, 6: 304.
- [29] Szpor S., J. Samuła. 1983. Ochrona odgromowa. Tom 1: Wiadomości podstawowe. Warszawa: WNT.
- [30] Thottappillil R., V.A. Rakov, M.A. Uman. 1997. Distribution of charge along the lightning channel: relation to remote electric and magnetic fields and to return-stroke models. Journal of Geophysical Research, 102: 6987-7006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23735094-2c27-477c-a17e-5925331d516c