PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Land cover change detection in northwestern Vietnam using Landsat images and Google Earth Engine

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, Google Earth Engine (GEE) provides a new way to effectively classify land cover utilizing available in-built classifiers. However, there have a few studies on the applications of the GEE so far. Therefore, the goal of this study is to explore the capacity of the GEE platform in terms of land cover classification in Dien Bien Province of Vietnam. Land cover classification in the year of 2003 and 2010 were performed using multiple-temporal Landsat images. Two algorithms – GMO Max Entropy and Classification and Regression Tree (CART) integrated into the Google Earth Engine (GEE) platform – were applied for this classification. The results indicated that the CART algorithm performed better in terms of mapping land use. The overall accuracy of this algorithm in the year of 2003 and 2010 were 80.0% and 81.6%, respectively. Significant changes between 2003 and 2010 were found as an increase in barren land and a reduction in forest land. This is likely due to the slash-and-burn agricultural practice of ethnic minorities in the province. Barren land seems to occur more at locations near water sources, reflecting the local people’s unsuitable farming practice. This study may provide use-ful information in land cover change in Dien Bien Province, as well as analysis mechanisms of this change, supporting environmental and natural resource management for the local authorities.
Wydawca
Rocznik
Tom
Strony
162--169
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Thuyloi University, Faculty of Water Resource Engineering, 175 Tay Son, Dong Da, Hanoi 100000, Vietnam
Bibliografia
  • BREIMAN L., FRIEDMAN J., STON C.J., OLSHEN R.A. 1984. Classification and regression trees. CRC Press. ISBN 0412048418 pp. 368.
  • CIHLAR J. 2000. Land cover mapping of large areas from satellites: status and research priorities. International Journal of Remote Sensing. Vol. 21. Iss. 6–7 p. 1093–1114. DOI 10.1080/014311600210092.
  • DUONG P., TRUNG T., NASAHARA K., TADONO T. 2018. JAXA High-resolution land use/land cover map for central Vietnam in 2007 and 2017. Remote Sensing. Vol. 10. Iss. 9, 1406. DOI 10.3390/rs10091406.
  • FARDA N. 2017. Multi-temporal land use mapping of coastal wetlands area using machine learning in Google Earth Engine. In: IOP Conference Series: Earth and Environmental Science (GSS 2017). 27–28.09.2017 Yogyakarta, Indonesia. IOP Publishing. Vol. 98, 012042. DOI 10.1088/1755-1315/98/1/ 012042.
  • GROSS D., DUBOIS G., PEKEL J.-F., MAYAUX P., HOLMGREN M., PRINS H.H.T., RONDININI C., BOI-TANI L. 2013. Monitoring land cover changes in African protected areas in the 21st century. Ecological Informatics. Vol. 14 p. 31–37. DOI 10.1016/ j.ecoinf.2012.12.002.
  • HOANG T.T., NASAHARA K.N., KATAGI J. 2017. Analysis of land cover changes in northern Vietnam using high resolution remote sensing data. In: Advances and applications in geospatial technology and Earth resources. Proceedings of the International Conference on Geo-Spatial Technologies and Earth Resources. Springer p. 134–151.
  • HU Y., HU Y. 2019. Land cover changes and their driving mechanisms in Central Asia from 2001 to 2017 supported by Google Earth Engine. Remote Sensing. Vol. 11. Iss. 5, 554. DOI 10.3390/rs11050554.
  • JENSEN J.R. 2015. Introductory digital image processing: A remote sensing perspective. 4th ed. Pearson Series in Geographic Information Science. ISBN 013405816X pp. 656.
  • JICA 2012. Potential forests and land related to climate change and forest in Vietnam. Hanoi, Vietnam. Vietnam National University of Forestry pp. 129 [in Vietnamese].
  • JICA 2016. Forest can change the world. Japan International Cooperation Agency pp. 16.
  • KAUR A., GHOSH S., DAS S.K. 2019. Satellite image-based land use/land cover dynamics and forest cover change analysis (1996–2016) in Odisha, India. Asian Journal of Water, Environment and Pollution. Vol. 16. Iss. 1 p. 25–39. DOI 10.3233/ FAOAJW190004.
  • KIEN N.D., HARWOOD C. 2017. Timber demand and supply in northwest Vietnam: The roles of natural forests and planted trees. Small-scale Forestry. Vol. 16. Iss. 1 p. 65–82. DOI 10.1007/s11842-016-9343-0.
  • LE T.H., THANH L.Q., DANG T.T., TRAN L.D., ZIMMER H., NICHOLS J.D. 2018. Forest rehabilitation options and sustainable management plans for northwest Vietnam. APFNet Training Workshop. Yunnan, China pp. 90.
  • LIU T., YANG X. 2015. Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Applied Geography. Vol. 56 p. 42–54. DOI 10.1016/j.ejrs.2016.08. 002.
  • MCDONALD R., MOHRI M., SILBERMAN N., WALKER D., MANN G.S. 2009. Efficient large-scale distributed training of conditional maximum entropy models. In: Advances in Neural Information Processing Systems 22 (NIPS 2009). Eds. Y. Bengio, D. Schuurmans, J.D. Lafferty, C.K.I. Williams, A. Culot-ta p. 1231–1239.
  • MEYFROIDT P., LAMBIN E.F. 2008. The causes of the reforestation in Vietnam. Land Use Policy. Vol. 25(2) p. 182–197. DOI 10.1016/j.landusepol.2007.06.001.
  • MOHAMMADI A., SHAHABI H., BIN AHMAD B. 2019. Land-cover change detection in a part of Cameron Highlands, Malaysia using ETM+ Satellite imagery and Support Vector Machine (SVM) Algorithm. Environment Asia. Vol. 12. Iss. 2 p. 145–154. DOI 10.14456/ea.2019.36.
  • NOSZCZYK T. 2019. A review of approaches to land use changes modeling. Human and Ecological Risk Assessment: An International Journal. Vol. 25. Iss. 6 p. 1377–1405. DOI 10.1080/10807039.2018.1468994.
  • NOSZCZYK T., RUTKOWSKA A., HERNIK J. 2017. Determining changes in land use structure in Małopolska using statistical methods. Polish Journal of Environmental Studies. Vol. 26. Iss. 1 p. 211–220. DOI 10.15244/pjoes/64913.
  • NOSZCZYK T., RUTKOWSKA A., HERNIK J. 2020. Exploring the land use changes in eastern Poland: Statistics-based modeling. Human and Ecological Risk Assessment: An International Journal. Vol. 26. Iss. 1 p. 255–282. DOI 10.1080/ 10807039.2018.1506254.
  • NYLAND K.E, GUNN G.E., SHIKLOMANOV N.I., ENG-STROM R.N., STRELETSKIY D.A. 2018. Land cover change in the lower Yenisei River using dense stacking of landsat imagery in Google Earth Engine. Remote Sensing. Vol. 10(8), 1226. DOI 10.3390/rs10081226.
  • PIMPLE U., SIMONETTI D., SITTHI A., PUNGKUL S., LEADPRATHOM K., SKUPEK H., SOM-ARD J., GOND V., TOWPRAYOON S. 2018. Google Earth engine based three decadal landsat imagery analysis for mapping of mangrove forests and its surroundings in the Trat province of Thailand. Journal of Computer and Communications. Vol. 6. Iss. 1 p. 247–264. DOI 10.4236/jcc.2018.61025.
  • PLOURDE L., CONGALTON R.G. 2003. Sampling method and sample placement. Photogrammetric Engineering and Remote Sensing. Vol. 69. Iss. 3 p. 289–297.
  • SHELESTOV A., LAVRENIUK M., KUSSUL N., NOVIKOV A., SKAKUN S. 2017. Exploring Google Earth engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping. Frontiers in Earth Science. Vol. 5, 17. DOI 10.3389/feart.2017.00017.
  • SIDHU N., PEBESMA E., CÂMARA G. 2018. Using Google Earth Engine to detect land cover change: Singapore as a use case. European Journal of Remote Sensing. Vol. 51. Iss. 1 p. 486–500. DOI 10.1080/22797254.2018.1451782.
  • TRAN T.X., HOANG M.T., TRAN H.T., NGUYEN K.D. 2012. Water resources on Vietnam's river system. Hanoi. Science and Technology Publisher House pp. 518. [In Vietnamese]
  • TRUONG C.N. 2017. Validation of the Terra-I forest loss detection products in Vietnam using Landsat-8 imagery: A case study of Dien Bien and Lam Dong Provinces. Clark University. MSc Thesis pp. 140.
  • USGS 2010. Thousands of landsat scenes in Google's Earth Engine [online]. U.S. Geological Survey. [Access 10.11.2019]. Available at: https://landsat.usgs.gov/google-earth-engine
  • VOGELMANN J.E., VAN KHOA P., SHERMEYER J., SHI H., WIMBER-LY M.C., DUONG H.T. 2017. Assessment of forest degradation in Vietnam using landsat time series data. Forests. Vol. 8. Iss. 7. DOI 10.3390/f8070238.
  • ZURQANI H.A., POST C.J., MIKHAILOVA E.A., SCHLAUTMAN M.A., SHARP J.L. 2018. Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation. Vol. 69 p. 175–185. DOI 10.1016/j.jag. 2017.12.006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2370569c-51ac-4509-b706-1a33b17ce869
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.