PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multifractal Nature of Diesel Engine Rattle Noise in Vehicle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The investigation results of the emission of noises accompanying the diesel engine powertrain running in unloaded condition at low or idle speed, are presented in the hereby paper. The multifractal nature of the tested signals was confirmed by means of two groups of parameters. The proposed local parameters are based on the distribution of the probability density of measures, segregated into subsets according to pointwise Holder exponents. The obtained spectra constitute a set of multifractal measures related to singularities representing the local scaling of measures in various points of the time series. Global parameters were defined on the basis of multifractal measures of the parametrised Renyi’s entropy. These are properties treating summarily the whole spectrum of the emitted noise and reflecting changes of the vibroacoustic energy levels generated by noise sources. The tests encompassing simultaneous application of both groups of parameters confirmed their efficiency in the comparative analysis as well as in the subjective assessment of the noise level generated in the drive system of vehicles with diesel engines. This opens new possibilities within the simulation range of vehicle noises, for the needs of constructing the passive and active reduction systems of the effects of the vibroacoustic energy propagation.
Rocznik
Strony
469--474
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • University of Technology and Humanities in Radom, Malczewskiego 29, 26-600 Radom, Poland
autor
  • University of Technology and Humanities in Radom, Malczewskiego 29, 26-600 Radom, Poland
Bibliografia
  • 1. Batko W., Dąbrowski Z., Engel Z., Kiciński J., Weyna S. (2005), Modern Methods of Research Vibroacoustic Processes [in Polish: Nowoczesne metody badania procesów wibroakustycznych], Institute for Sustainable Technologies, Radom, Poland.
  • 2. Batko W., Dąbrowski Z., Kiciński J. (2008), Nonlinear Effects In Technical Diagnostics, Institute for Sustainable Technologies, Radom, Poland.
  • 3. Borak Sz., Härdle W., Weron R. (2005), Stable Distributions, retrieved April 29, 2016, from Humboldt-Universität zu Berlin: http://prac.im.pwr.edu.pl/~hugo/publ/SFB2005-008_Borak_Haerdle_Weron.pdf.
  • 4. Burdzik R., Konieczny Ł. (2011), Research into noise emission by a car combustion engine exhaust system, Zeszyty naukowe AMW, Rok LII, 184, 1.
  • 5. Butar F. B., Kale M. (2011), Fractal analysis of time series and distribution properties of Hurst exponent, Journal of Mathematical Sciences & Mathematics Education, 5, 1, 8-19.
  • 6. Cheer J., Elliott S. J. (2015), Multichannel control systems for the attenuation of interior road noise in vehicles, Mechanical Systems and Signal Processing, 60, 753-769.
  • 7. Dąbrowski Z. (1992), The evaluation of the vibroacoustic activity for the needs of constructing and use of machines, Machine Dynamics Problems, 4.
  • 8. Dąbrowski Z., Dziurdź J. (2016a), Simultaneous analysis of noise and vibration of machine in vibroacoustic diagnostics, Archives of Acoustics, 41, 4, 783-789.
  • 9. Dąbrowski Z., Dziurdź J. (2016b), Simultaneous analysis of vibrations and noise in the task of minimizing vibroacoustic activity of machines, Archives of Acoustics, 41, 2, 303-308.
  • 10. Dziurdź J. (2013), Analysis of nonlinear phenomena in diagnosing of the vehicle drive systems [in Polish: Analiza zjawisk nieliniowych w diagnozowaniu układów napędowych pojazdów], Institute for Sustainable Technologies, Radom, Poland.
  • 11. Elliott S. J. (2010), Active noise and vibration control in vehicles, Vehicle Noise and Vibration Refinement, Woodhead Publishing Limited, pp. 235-251.
  • 12. Hurst H. E. (1951), Long term storage capacity of reservoirs, Transactions of the American Society of Civil Engineers, 116, 1, 770-799.
  • 13. Kantelhardt I. W. (2011), Fractal and multifractal time series, Mathematics of Complexity and Dynamical Systems, Springer-Verlag, New York, pp. 463-487.
  • 14. Komorska I., Puchalski A. (2013), On-board diagnostics of mechanical defects of the vehicle drive system based on the vibration signal reference model, Journal of Vibroegineering, 15, 1, 450-458.
  • 15. Komorska I., Puchalski A. (2015), On-line diagnosis of mechanical defects of the combustion engine with principal components analysis, Journal of Vibroegineering, 17, 8, 4279-4288.
  • 16. Konieczny L., Burdzik R., Warczek J., Czech P., Wojnar G., Mlynczak J. (2015), Determination of the effect of tire stiffness on wheel accelerations by the forced vibration test method, Journal of Vibroengineering, 17, 8, 4469-4477.
  • 17. Nolan J. P. (2015), Stable Distributions Models for Heavy Tailed Data, retrieved June 1, 2016, from: Math/Stat Dep American Univ., http://fs2.american.edu/jpnolan/www/stable/chap1.pdf.
  • 18. Puchalski A. (2015a), A technique for the vibration signal analysis in vehicle diagnostics, Mechanical Systems and Signal Processing, 56-57, 173-180.
  • 19. Puchalski A. (2015b), Multiscale analysis of vibration signals in engine valve system, Journal of Vibroegineering, 17, 7, 3586-3593.
  • 20. Puchalski A., Komorska I. (2014), Looking for vibrational measure of vehicle powertrain using multifractal analysis, Vibroengineering Procedia, 3, 351-356.
  • 21. Qianfan X. (2013), Noise, vibration, and harshness (NVH) in diesel engine system design, Diesel Engine System Design, Woodhead Publishing Limited, pp. 759-821.
  • 22. Sobecki B., Davies P., Bolton J. S. (2014), Simulation of gear rattle to aid in the development of sound quality metrics for diesel engine component specification, Proceedings of 43rd International Congress on Noise Control Engineering, Melbourne, Australia.
  • 23. Szadkowski A. (1991), Mathematical Model and Computer Simulation of Idle Gear Rattle, SAE Technical Paper 910641, doi: 10.4271/910641.
  • 24. Yu G., Li Ch., Zhang J. (2013), A new statistical modeling and detection method for rolling element bearing faults based on alpha-stable distribution, Mechanical Systems and Signal Processing, 41, 155-175.
  • 25. Żak G., Wyłomańska A., Zimroz R. (2016), Datadriven vibration signal filtering procedure based on the α-stable distribution, Journal of Vibroengineering, 18, 2, 826-837.
  • 26. Zmeskal O., Dzik P., Vesely M. (2013), Entropy of fractal systems, Computers and Mathematics with Applications, 66, 135-146.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-236895b7-a5f3-4535-86c2-aeacbf320584
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.