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Abstract: This paper presents a summary of a study that uses the Aboodh transformation and homotopy perturbation approach to analyze 
the behavior of electrically actuated microbeams in microelectromechanical systems that incorporate multiwalled carbon nanotubes and 
are subjected to the van der Waals force. All of the equations were transformed into linear form using the HPM approach. Electrically oper-
ated microbeams, a popular structure in MEMS, are the subject of this work. Because of their interaction with a nearby surface, these mi-
crobeams are sensitive to a variety of forces, such as the van der Waals force and body forces. MWCNTs are also incorporated into the 
MEMSs in this study because of their special mechanical, thermal, and electrical characteristics. The suggested method uses the HPM to 
model how electrically activated microbeams behave when MWCNTs and the van der Waals force are present. The nonlinear equations 
controlling the dynamics of the system can be roughly solved thanks to the HPM. The HPM offers a precise and effective way to analyze 
the microbeam's reaction to these outside stimuli by converting the nonlinear equations into linear forms. The study's findings shed im-
portant light on how electrically activated microbeams behave in MEMSs. A more thorough examination of the system's performance is 
made possible with the addition of MWCNTs and the van der Waals force. With its ability to approximate solutions and characterize system 
behavior, the HPM is a potent instrument that improves comprehension of the physics at play and facilitates the design and optimization of 
MEMS devices. The aforementioned method's accuracy is verified by comparing it with published data that directly aligns with Anjum et 
al.'s findings. We have faith in this method's accuracy and its current application. 
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1. INTRODUCTION 

Microelectronics, mechanical components, sensors, and actu-
ators are all combined in microelectromechanical system (MEMS) 
technology. For these microsystems, tiny mechanical components 
like gears, springs, and resonators can be produced by the semi-
conductor manufacturing industry. Mobile phones, game control-
lers, lab-on-a-chip systems, and drug delivery systems all incorpo-
rate MEMS devices. They are used by airbag sensors, tire pres-
sure monitoring systems, and aircraft navigation and guidance 
systems. Due to their small size and low power consumption, 
MEMS devices are perfect for battery-powered electronics. Chips 
with several functions allow for more intricate and effective system 
designs. Technology related to material science, design optimiza-
tion, and packaging is propelling MEMS technology into new 
domains. MEMS devices will keep having an impact on a wide 
range of industries and uses [1-6]. In MEMS dynamics, pull-in 
instability and periodic behavior are well-represented by differen-
tial equations. Therefore, it is essential to comprehend modern 
differential equation solving techniques. It is difficult to solve non-
linear MEMS models analytically. Nonlinear equations without 
analytical solutions are used in MEMS research [7-8]. Research-
ers have been working on analytical techniques to deal with 
MEMS nonlinear oscillation for decades. For these microstruc-
tures, classical oscillatory theory has several shortcomings [9–10]. 

Since these procedures are unable to solve highly nonlinear 
equations, alternative techniques have been developed and pub-
lished in the public domain. A number of books [11–13] published 
in the last ten years have addressed mathematical methods in 
MEMS applications. Mathematical tools to determine their approx-
imate solutions have been developed extensively, since their 
exact solutions are difficult to obtain and numerical methods 
cannot clearly depict the nonlinear frequency-amplitude connec-
tion. Additionally, a variety of analytical techniques are employed 
by researchers to solve N/MEMS oscillators. The residual har-
monic balance approach [22], the parameter expansion technique 
[24], the Adomian decomposition method [25], the variational 
iteration method (VIM) [14–17], the energy balance method [18], 
the iteration perturbation technique [19–21], the residual power 
series method [26], and the frequency formulation tool [27, 28] are 
a few of these. 

An effective technique for analyzing and enhancing the per-
formance of MEMSs is the optimum homotopy equation. The ideal 
values of different parameters, like beam size, material qualities, 
and applied forces, can be found to achieve desired system be-
havior by writing an appropriate optimal homotopy equation. The 
Euler-Bernoulli beam equation, the equations describing the 
electrostatic or van der Waals forces, and other governing equa-
tions of the MEMS are incorporated into this equation. The goal of 
the ideal homotopy equation is to minimize an objective function, 
which may have to do with deflection, stress, power usage, or any 
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other relevant performance indicator. Engineers and researchers 
can improve the design and performance of MEMS devices by 
finding the ideal values for system parameters by solving the 
optimal homotopy equation [29–34]. Through the examination of 
different design configurations and optimization methodologies 
made possible by this methodology, the field of MEMS is ultimate-
ly advanced, and the functionality and efficiency of MEMSs in a 
variety of applications are improved. Highly nonlinear problems 
have been solved using the homotopy perturbation method (HPM) 
[35–40]. This method provides the answer in the form of a series 
that quickly approaches the approximate answer. This approach's 
main advantage is that it produces a highly precise answer after 
just one iteration, making it ideal for usage in real-world scenarios. 
This advantage motivated us to use this approach in conjunction 
with the Aboodh transform to solve the oscillatory problem with 
only two perturbation terms. The Aboodh transform has a close 
relationship with the Laplace transform and was essentially de-
rived from the Fourier integral. The Aboodh transform is a potent 
method for figuring out the answers to a lot of partial and ordinary 
differential equations. 

2. ANALYSIS OF THE ABOODH-BASED HOMOTOPY 
METHOD 

The Aboodh transform, which uses the Fourier integral to 
solve ordinary and partial differential equations, was developed by 
Khalid Aboodh. 

If the function g(t), t ≥ 0 is piecewise continuous and of an 
exponential order, then Aboodh transform is defined in this form, 
as indicated in Aboodh’s 2013 paper [37]: 

A[g(t)] = g(v) =
1

v
∫ g(t)e−vtdt,   

∞

0
                    (2.1) 

The Aboodh and inverse Aboodh transforms of some useful 
functions related to this article are listed in Table 1. 

Table 1. Aboodh transforms of some useful functions [37]. 

g(t) 1 𝑡 𝑒𝑏𝑡  sin(𝑏𝑡) 

𝐴[𝑔(𝑡)] 1

𝑣2 
1

𝑣3 
1

𝑣2 − 𝑏𝑣
 

𝑏

𝑣(𝑣2 + 𝑏2)
 

g(t) 𝑡sin(𝑏𝑡) sinℎ(𝑏𝑡) cosℎ(𝑏𝑡) cos(𝑏𝑡) 

𝐴[𝑔(𝑡)] 2𝑏

(𝑣2 + 𝑏2)2
 

𝑏

𝑣(𝑣2 − 𝑏2)
 

1

(𝑣2 − 𝑏2)
 

1

(𝑣2 + 𝑏2)
 

Aboodh transforms of first and second time derivatives of g(t) 
are expressed as follows: 

𝐴[𝑔′(𝑡)] = 𝑣𝑔(𝑣) −
𝑔(0)

𝑣
 

𝐴[𝑔′′(𝑡)] = 𝑣2𝑔(𝑣) −
𝑔′(0)

𝑣
− 𝑔(0) 

Consider the following nonhomogeneous differential equation 
in this form: 

𝐿𝑞(𝑡) + 𝜔2𝑞(𝑡) + 𝑅𝑞(𝑡) + 𝑁𝑞(𝑡) = 𝑔(𝑡)                    (2.2) 

The initial condition of the above equation at time t  0 is giv-
en as follows: 

𝑞(0) = 𝐴,                   𝑞̇(0) = 0,                      (2.3) 

where L indicate the linear differential part of second order 

(𝐿 =
𝜕2

𝜕𝑡2), 𝑅 is the remaining lesser order linear part, 𝑁𝑞 is the 

nonlinear part, g(t) denotes the inhomogeneous term and ω is the 
angular frequency of the system. 

Now, applying Aboodh transform to both sides of Eq. (2.2), we 
have the following equation: 

𝐴[𝐿𝑞(𝑡)] + 𝜔2𝐴[𝑞(𝑡)] + 𝐴[𝑅𝑞(𝑡)] + 𝐴[𝑁𝑞(𝑡)] = 𝐴[𝑔(𝑡)] 

         (2.4) 

By utilising the Aboodh transform properties and initial condi-
tion given above, Eq. (2.4) can be rewritten as follows: 

𝑞(𝑣) =

(
1

𝑣2+𝜔2) 𝑞(0) +
1

𝑣(𝑣2+𝜔2)
𝑞′(0) − (

1

𝑣2+𝜔2) 𝐴[𝑅𝑞(𝑡)] −

(
1

𝑣2+𝜔2) 𝐴[𝑁𝑞(𝑡)] − (
1

𝑣2+𝜔2) 𝐴[𝑔(𝑡)]                               (2.5) 

The Aboodh inverse transform of Eq. (2.5) is given as follows: 

𝐴−1(𝑞(𝑣)) = 𝑞(𝑡) = 𝑍0(𝑡) − 𝐴−1 [(
1

𝑣2+𝜔2) 𝐴[𝑅𝑞(𝑡)]] −

𝐴−1 [(
1

𝑣2+𝜔2) 𝐴[𝑁𝑞(𝑡)]] − 𝐴−1 [(
1

𝑣2+𝜔2) 𝐴[𝑔(𝑡)]]         (2.6) 

where, 

𝑍0(𝑡) = (
1

𝑣2 + 𝜔2
) 𝑞(0) +

1

𝑣(𝑣2 + 𝜔2)
𝑞′(0) 

According to the standard HPM [42–43], we can expand q(t) in 

the power of embedding parameter p ϵ [0,1] as, q(x, t) =
∑ pnqn(t)∞

n=0  and nonlinear term Nq(t) = ∑ pnHn(t)∞
n=0 . 

Here, he’s polynomial may be rewritten as follows: 

𝐻𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝑝𝑛
[𝑁(∑ 𝑝𝑛𝑞𝑛(𝑡) )] ,           𝑛 = 0,1,2, …

∞

𝑛=0

 

By employing HPM and substituting the value of q(t) and Nq(t) 
in the above-mentioned Eq. (2.6), we have the following equation: 

∑ 𝑝𝑛𝑞𝑛(𝑡)∞
𝑛=0 =

𝑍0(𝑡) − 𝑝 (𝐴−1 [(
1

𝑣2+𝜔2) 𝐴[𝑅 ∑ 𝑝𝑛𝑞𝑛(𝑡)∞
𝑛=0 ]] +

𝐴−1 [(
1

𝑣2+𝜔2) 𝐴[∑ 𝑝𝑛𝐻𝑛(𝑡)∞
𝑛=0 ]] + 𝐴−1 [(

1

𝑣2+𝜔2) 𝐴[𝑔(𝑡)]])  

 (2.7) 

𝑝0: 𝑧0(𝑡) = 𝑍0                                                                        (2.8) 

𝑝1: 𝑧1(𝑡) =

𝐴−1 [(
1

𝑣2+𝜔2) 𝐴[𝑅𝑞0(𝑡)]] − 𝐴−1 [(
1

𝑣2+𝜔2) 𝐴[𝐻0(𝑞0(𝑡))]] −

𝐴−1 [(
1

𝑣2+𝜔2) 𝐴[𝑔(𝑡)]]                                                          (2.9) 

𝑝2: 𝑧2(𝑡) =

𝐴−1 [(
1

𝑣2+𝜔2) 𝐴[𝑅𝑞1(𝑡)]] − 𝐴−1 [(
1

𝑣2+𝜔2) 𝐴[𝐻1(𝑞1(𝑡))]] −

𝐴−1 [(
1

𝑣2+𝜔2) 𝐴[𝑔(𝑡)]]                                                        (2.10) 

As 𝑝 → 1, we may write the approximate solution as follows: 

𝑧(𝑡) = lim𝑝→1 ∑ 𝑝𝑛𝑞𝑛(𝑡)∞
𝑛=0 = 𝑞0(𝑡) + 𝑞1(𝑡) + 𝑞2(𝑡) …   

(2.11)   

Hence, we may use q0(t), q1(t), q2(t) … to obtain the ap-
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proximate solution of the oscillator system, but we only utilise Eqs. 
(2.9) and (2.10) to express the solution methodology. 

Now, we will rewrite Eq. (2.9) in the following form: 

𝑧1(𝑡) =

𝐴−1 [(
1

𝑣2+𝜔2) 𝐴[𝑅𝑞0(𝑡)]] − 𝐴−1 [(
1

𝑣2+𝜔2) 𝐴[𝐻0(𝑞0(𝑡))]] −

𝐴−1 [(
1

𝑣2+𝜔2) 𝐴[𝑔(𝑡)]].                                                       (2.12) 

3. PROBLEM FORMULATION 

In this section, we discuss a doubly clamped microbeam with 

dimensions L, h, b and ρ, which represent the length, thickness, 
width and density of the microbeam, respectively, as shown in 
Figure 1. 

The partial differential equation of a motion as the deflection of 
microbeam by using Euler–Bernoulli beam theory [44] is ex-
pressed as follows: 

𝐸𝐼
𝜕4𝑊

𝜕𝑞4 + 𝜌𝑆
𝜕2𝑊

𝜕𝜏2 − [𝑁 +
𝐸𝑆

2𝐿
∫ (

𝜕𝑊

𝜕𝑞
)

𝐿

0
𝑑𝑞]

𝜕2𝑊

𝜕𝑞2 − 𝐹(𝑞, 𝜏) (3.1) 

where W(q, τ) represents the function of location q and time τ is 
the deflection of microbeam. Further, E denotes the Young’s 

modulus, with S = bh  and I =
bh3

12
, indicating the cross-

sectional area and moment of inertia along y axis, respectively. Ñ 
is expressed as axial load, and F(q, τ) is the force formulated 
from electrostatic excitation [45]. 

(𝑞, 𝜏) =
𝑏𝑣2

2
𝜖𝑣 [

1

(𝑑−𝑊)2 −
1

(𝑑+𝑊)2],  

where ϵv denotes a dielectric constant with its values amounting 
to 8.85 PFm−1, v is the Poisson ratio and d is the gap between a 
beam and its substrate. 

The boundary condition for the doubly clamped beam can be 
written as follows: 

𝑊(0, 𝜏) = 𝑊(𝐿, 𝜏) = 0,
𝜕𝑊

𝜕𝑞
|

(0,𝜏)
=

𝜕𝑊

𝜕𝑞
|

(𝐿,𝜏)
= 0            (3.2) 

 
 

Fig. 1. The model of a doubly clamped electrically actuated  
  microbeam-   based MEMS 

Nondimensional variables such as location, deflection of the 
nanobeam and time can be denoted as follows: 

𝜂 =
𝑞

𝐿
 ,         𝑤 =

𝑊

𝑑
 , 𝑡 =

𝜏

𝑇̃
                     (3.3) 

where 𝑇̃ = √
𝜌ℎ𝑏𝐿4

𝐸𝐼
. 

By substituting Eq. (3.3) into Eq. (3.1), we obtain: 

𝜕4𝑤

𝜕𝜂4 +
𝜕2𝑤

𝜕𝜏2 − [𝛼 + 𝛽 ∫ (
𝜕𝑤

𝜕𝜂
)

1

0
𝑑𝜂]

𝜕2𝑤

𝜕𝜂2 −
𝜅2

4
[

1

(𝑑−𝑊)2 −

1

(𝑑+𝑊)2] = 0,                       (3.4) 

where N is the axial load, α denote the aspect ratio and electro-
static v of nondimensional variables are defined as follows: 

𝑁 =
𝑁𝐿2

𝐸𝐼
, 𝛼 = 6(

𝑑

ℎ
)2, 𝑣 =

24𝐿4𝑣2𝜖𝑣

𝐸𝑑3ℎ3                      (3.5) 

The boundary conditions in nondimensional form can be writ-
ten as follows: 

𝑤(0, 𝑡) = 𝑤(1, 𝑡) = 0, 

𝜕𝑤

𝜕𝜂
|

(0,𝜏)
=

𝜕𝑤

𝜕𝜂
|

(1,𝜏)
= 0                      (3.6) 

Now, we employ the discreate Galerkin technique to find the 
solution of Eq. (3.4). Hence, we write the deflection function 

w(η, t), which denotes the product of two functions. 

𝑤(𝜂, 𝑡) = 𝜓(𝜂)𝑞(𝑡)                       (3.7) 

where 𝜓 represents the time and trail function, which, as indicated 
in Lobontiu’s 2007 study [11], is expressed as follows: 

𝜓(𝜂, 𝑡) = 16𝜂2(1 − 𝜂)2                      (3.8) 

From the governing differential equation, we substitute Eq. 

(3.7) into Eq. (3.4), multiply by factor ψ2(1 − w2)2 and then 
integrate over dimensionless domain to obtain the following equa-
tion: 

∫ 𝜓
1

0
(1 − 𝜓2𝑞2)2𝜓′′′′𝑑𝜂 + ∫ 𝜓21

0
(1 − 𝜓2𝑞2)2𝑞̈𝑑𝜂 −

∫ 𝜓
1

0
(1 − 𝜓2𝑞2)2 (𝑁 + 𝛼 ∫ (

𝜕𝑤

𝜕𝜂
)

1

0
𝑑𝜂) 𝑞𝜓′′𝑑𝜂 −

∫ 𝑣2𝜓2𝑞𝑑𝜂 = 0
1

0
                                                                   (3.9) 

where over-dot indicates the differentiation with respect to time to 
and prime dot denotes the derivative with respect to time to coor-

dinate variable η. Eq. (3.9) can be rewritten as follows: 

(𝑔0 + 𝑔1𝑞2 + 𝑔2𝑞4)𝑞′′ + 𝑔3𝑞2 + 𝑔4𝑞′𝑞3 + 𝑔5𝑞′𝑞5 +
𝑔6𝑞7 = 0                     (3.10) 

where coefficients g0, g1, g2 … … g6 can be determined as given 
in Appendices A–C. 

Eq. (3.10) represents the nonlinear ordinary differential equa-
tion (ODE) under the given initial conditions. 

𝑞(0) = 𝐴,           𝑞′(0) = 0                    (3.11) 

3.1. Applications 

In this article, we address three well-known applications of the 
higher-order nonlinear problems: the four-order differential equa-
tion of the multiwalled carbon nanotube-based microelectrome-
chanical systems (MWCNT-MEMSs), the six-order differential 
equation of the microbeam subjected to the van der Waals force, 
and the seven-order differential equation of the doubly clamped 
electrically actuated microbeam-based MEMS. 

3.2.  The model of a doubly clamped electrically actuated 
microbeam-based MEMSs 

The structural, electrical, and mechanical properties of the mi-
crobeam are usually represented mathematically in MEMSs, as 
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shown in Figure 1. This model takes into account the mechanical 
characteristics of the beam, such as its stiffness and damping, as 
well as the electrostatic force produced by applying a voltage to 
the microbeam. To forecast the behavior of the microbeam under 
various operating conditions, such as changing voltage or tem-
perature, the model's governing equations can be solved analyti-
cally or numerically. The concept is frequently applied to the 
design and optimization of MEMS devices for a range of uses, 
such as signal processing, actuation, and sensing. The nonlinear 
differential equation that is discussed in this section serves as an 
example of numerous oscillatory systems found in nanoscience 
and engineering [46–48]. 

(𝑐0 + 𝑐1𝑞2 + 𝑐2𝑞4)𝑞′′ + 𝑐3𝑞2 + 𝑐4𝑞′𝑞3
+ 𝑐5𝑞′𝑞5 + 𝑐6𝑞7 =

0                       (3.12) 

where 𝑐𝑖(𝑖 = 0,1,2, … ,7) are parameters and dividing 𝑐0 Eq. 
(3.12) becomes, 

(1 + 𝑔1𝑞2 + 𝑔2𝑞4)𝑞′′ + 𝑔3𝑞2 + 𝑔4𝑞′𝑞3 + 𝑔5𝑞′𝑞5 +
𝑔6𝑞7 = 0                     (3.13) 

where 𝑔𝑖 =
𝑐𝑖

𝑐𝑜
for (𝑖 = 0,1,2, … ,7). 

Now, for rewriting Eq. (3.13), we may consider a general non-
linear oscillator equation, which could be expressed as: 

𝑞′′(𝑡) + 𝑓(𝑞) = 0     

where the initial conditions are, 

𝑞(0) = 𝐴, 𝑞′(0) = 0  

The above equation can be rewritten as: 

𝑞′′ + 𝜔2𝑞 + ℎ(𝑞) = 0                                   (3.14) 

where 𝜔 is the frequency that can be calculated as: 

ℎ(𝑞) = 𝑓(𝑞) − 𝜔2𝑞 

where  

ℎ(𝑞) = (1 + 𝑔1𝑞2 + 𝑔2𝑞4)𝑞′′ + (𝑔3𝑞 − 𝜔2)𝑞 + 𝑔4𝑞′𝑞3 +
𝑔5𝑞′𝑞5 + 𝑔6𝑞7 = 0. 

By applying Aboodh transform on both sides of Eq. (3.13), we 
obtain: 

𝑞(𝑣) = (
1

𝑣2+𝜔2) 𝑞(0) +
1

𝑣(𝑣2+𝜔2)
𝑞′(0) −

1

𝑣2+𝜔2 𝐴[(1 +

𝑔1𝑞2 + 𝑔2𝑞4)𝑞′′ + 𝑔3𝑞 + 𝑔4𝑞3 + 𝑔5𝑞5 + 𝑔6𝑞7]  (3.15) 

Now, we apply the Aboodh inverse transform and use the ini-

tial conditions q(0) = A, q′(0) = 0 in Eq. (3.12) to obtain, 

𝑞(𝑣) = 𝐴𝑐𝑜𝑠𝑤𝑡 − 𝐴−1[
1

𝑣2+𝜔2 𝐴[(1 + 𝑔1𝑞2 + 𝑔2𝑞4)𝑞′′ +

𝑔3𝑞 + 𝑔4𝑞3 + 𝑔5𝑞5 + 𝑔6𝑞7]                                  (3.16) 

By using Aboodh and inverse properties, we obtain the coeffi-

cients of p0and p1 from Eqs. (2.9) and (2.10) as follows: 
With the help of the properties of AT and inverse AT, we ob-

tain the coefficients of p0and p1 as follows: 

𝑝0: 𝑧0(𝑡) = 𝐴𝑐𝑜𝑠𝑤𝑡                    (3.17) 

𝑝1: 𝑧1(𝑡) =
1

2𝜔
[𝐴𝜔2 +

3

4
𝑔1𝐴3𝜔2 +

5

8
𝑔2𝐴5𝜔2 − 𝑔3𝐴 −

3

4
𝑔4𝐴3 −

10

16
𝑔5𝐴5 −

35

64
𝑔6𝐴7] 𝑡𝑠𝑖𝑛𝑤𝑡 +

1

8𝜔2 [−𝐴𝜔2 (
1

4
𝑔1𝐴2 +

5

16
𝑔2𝐴4) +

1

16
𝑔4𝐴4 +

5

16
𝑔5𝐴5 +

21

64
𝑔6𝐴7] (𝑐𝑜𝑠𝑤𝑡 − 𝑐𝑜𝑠3𝑤𝑡) +

1

24𝜔2 [−𝐴𝜔2 (
1

16
𝑔2𝐴4) +

1

16
𝑔5𝐴5 +

7

64
𝑔6𝐴7] (𝑐𝑜𝑠𝑤𝑡 − 𝑐𝑜𝑠5𝑤𝑡) +

1

48𝜔2 [
1

64
𝑔6𝐴7] (𝑐𝑜𝑠𝑤𝑡 − 𝑐𝑜𝑠7𝑤𝑡)                                    (3.18) 

The secular-term in Eq. (3.18) is written as follows: 

𝐴𝜔2 +
3

4
𝑔1𝐴3𝜔2 +

5

8
𝑔2𝐴5𝜔2 − 𝑔3𝐴 −

3

4
𝑔4𝐴3 −

10

16
𝑔5𝐴5 −

35

64
𝑔6𝐴7 = 0                                    (3.19) 

which is similar to first-order frequency determined by Anjum et al. 
[49]: 

𝜔 = √
𝑔3+𝑔4𝐴2+𝑔4𝐴4+𝑔6𝐴6

1+
3

4
𝑔1𝐴2+

5

8
𝑔2𝐴4

                                   (3.20) 

By substituting Eq. (3.20) in Eq. (3.18), we obtain the first-
order approximate analytic solution, which can be expressed as 
follows: 

𝑞𝐴𝑇𝐻𝑀𝑃 = 𝐴𝑐𝑜𝑠𝑤𝑡 +
1

8𝜔2 [−𝐴𝜔2 (
1

4
𝑔1𝐴2 +

5

16
𝑔2𝐴4) +

1

16
𝑔4𝐴4 +

5

16
𝑔5𝐴5 +

21

64
𝑔6𝐴7] (𝑐𝑜𝑠𝑤𝑡 − 𝑐𝑜𝑠3𝑤𝑡) +

1

24𝜔2 [−𝐴𝜔2 (
1

16
𝑔2𝐴4) +

1

16
𝑔5𝐴5 +

7

64
𝑔6𝐴7] (𝑐𝑜𝑠𝑤𝑡 −

𝑐𝑜𝑠5𝑤𝑡) +
1

48𝜔2 [
1

64
𝑔6𝐴7] (𝑐𝑜𝑠𝑤𝑡 − 𝑐𝑜𝑠7𝑤𝑡)   (3.21)          

Now, we analyse various applications related to the oscillatory 
system expressed in Eq. (3.12). 

3.3.  Case 1 (microbeam is subjected to the van der Waals 
force) 

Fascinating events occur when the van der Waals force acts 
on a microbeam, which is a tiny beam or structure at the mi-
croscale. Because of transient variations in the distribution of 
electrons between atoms and molecules, there is a weak attrac-
tive force known as the van der Waals force. The van der Waals 
force becomes considerable when the microbeam approaches a 
surface or another microstructure. The microbeam sticks to the 
surface or neighboring structures because of this force, which 
functions as an adhesive. The distance between the microbeam 
and the surface, the characteristics of the material, and the 
roughness of the surfaces involved all affect how strong the van 
der Waals force is. Comprehending and managing the van der 
Waals force in microscale systems is essential for uses in do-
mains including surface science, nanotechnology, and MEMS.In 
the study of Qian et al. [22], it is expressed as follows: 

(ℎ0 + ℎ1𝑞 + ℎ2𝑞2 + ℎ3𝑞3)𝑞′′ + ℎ4 + ℎ5𝑞 + ℎ6𝑞2 +
ℎ7𝑞3 + ℎ8𝑞4 + ℎ9𝑞5 + ℎ10𝑞6 = 0                (3.22) 

𝑞(0) = 𝐴, 𝑞′(0) = 0 

where q is the normalised midpoint deflection of the beam, and q′ 

and q′′denote the first and second derivatives of t, respectively. 
The solution of Eq. (3.22) is already found by harmonic bal-

ance technique. Eq. (3.22) can be rewritten as follows: 

(1 + 𝑚1𝑞 + 𝑚2𝑞2 + 𝑚3𝑞3)𝑞′′ + 𝑚4 + 𝑚5𝑞 + 𝑚6𝑞2 +
𝑚7𝑞3 + 𝑚8𝑞4 + 𝑚9𝑞5 + 𝑚10𝑞6 = 0                              (3.23) 

The approximate analytic solution of Eq. (3.22) can be ob-
tained by using the Aboodh homotopy method as follows: 
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𝑞𝐴𝑇𝐻𝑃𝑀 = −
Ψ0

𝜔2
+

1

𝜔2
(Ψ0 −

Ψ2

3
−

Ψ3

8
−

Ψ4

15
−

Ψ5

24
−

Ψ6

35

+ 𝐴) 𝑐𝑜𝑠𝑤𝑡 +
1

3𝜔2
Ψ2𝑐𝑜𝑠2𝑤𝑡

+
1

8𝜔2
Ψ3𝑐𝑜𝑠3𝑤𝑡 +

1

15𝜔2
Ψ4𝑐𝑜𝑠4𝑤𝑡

+
1

24𝜔2
Ψ5𝑐𝑜𝑠5𝑤𝑡 +

1

35𝜔2
Ψ6𝑐𝑜𝑠6𝑤𝑡 

                (3.24) 

Moreover, the constituents of the coefficients Ψm , (m =
0,1,2, … 6) may be written in terms of, and the nonlinear fre-
quency of the oscillator is obtained by applying, the Aboodh ho-
motopy perturbation method (ATHPM) in the following form: 

𝜔 = √
𝑚5+6𝑚7𝐴2+𝑚9𝐴4

8+𝑚2𝐴2                     (3.25) 

which is similar to the first-order frequency determined by Anjum 
et al. [50] with the use of a Laplace method. 

3.4. Case II: (MWCNT-MEMSs) 

MEMSs based on MWCNTs offer a viable method for produc-
ing highly effective and sensitive sensors. The unique mechanical, 
electrical, and thermal properties of MWCNTs enable the devel-
opment of MEMS devices with previously unheard-of levels of 
sensitivity and precision. MWCNT-MEMSs have shown promise 
for application in a variety of fields, such as aerospace, biology, 
and environmental monitoring. As technology advances, MWCNT-
MEMSs are expected to be utilized more often and have a major 
influence on the future direction of MEMS devices. The nonlinear 
vibratory equation [21] in the second case will have the following 
solution: 

𝑞′′ + 𝑘0 + 𝑘1𝑞 + 𝑘2𝑞2 + 𝑘3𝑞3 + 𝑘4𝑞4 = 0                   (3.26) 

The approximate analytic solution of Eq. (3.26) can be deter-
mined by using the Aboodh homotopy method. 

𝑞𝐴𝑇𝐻𝑃𝑀 = Φ0 + [Φ1 + 𝐴]𝑐𝑜𝑠𝑤𝑡 + Φ2𝑐𝑜𝑠2𝑤𝑡
+ Φ3𝑐𝑜𝑠3𝑤𝑡 + Φ4𝑐𝑜𝑠4𝑤𝑡 

(3.27) 

where  

𝜔 = √𝑘1 + 𝑘3𝐴2                                    (3.28) 

Eqs. (3.27) and (3.28) are also similar to the results obtained 
with the use of the parameter expansion method [23] for multi-
walled nanotube models. 

4. CONCLUSION 

It has shown to be a useful and successful method to analyze 
electrically actuated microbeams in MEMSs exposed to van der 
Waals force and MWCNTs by using the HPM with the Aboodh 
transformation. The HPM is a potent mathematical method that 
creates an analytical solution in the form of a convergent series to 
solve nonlinear differential equations. The precision and conver-
gence of the solutions found are further improved by the Aboodh 
transformation, which is a variation of the HPM. Researchers have 

been able to handle the intricate dynamics of electrically actuated 
microbeams in MEMS devices by utilizing this mix of techniques. 
The behavior and performance of microbeams are greatly affected 
by the presence of van der Waals forces and MWCNTs. The 
behavior of microscale devices is significantly influenced by van 
der Waals forces, which result from the interaction of atoms and 
molecules. On the other hand, MWCNTs are attractive options for 
a range of MEMS applications due to their distinct mechanical and 
electrical characteristics. A more accurate depiction of the sys-
tem's behavior can be obtained by analyzing both of these varia-
bles. The outcomes obtained by combining the HPM with the 
Aboodh transformation have shown that it is possible to forecast 
electrically activated microbeams in MEMSs that are exposed to 
MWCNTs and van der Waals forces with accuracy. The technique 
enables a more thorough comprehension of the behavior of the 
system, including the impact of several parameters on its dynamic 
response, such as the length, width, and applied voltage of the 
beam. In terms of computational efficiency and practicality, the 
HPM with the Aboodh transformation is also superior to other 
numerical techniques, like finite element methods. For scientists 
and engineers working on the design and optimization of MEMS 
devices, this makes it a useful tool. 
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