PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diffusive properties of alginate biosorbents

Identyfikatory
Warianty tytułu
PL
Właściwości dyfuzyjne biosorbentów alginianowych
Języki publikacji
EN
Abstrakty
EN
Effective diffusion coefficients for different heavy-metal salts: Cu, Cd, Zn, Cr, Pb in calcium alginate beads were determined. Their values depended on the metal type, anion from the metal salt, and the alginate content in the beads. The results of calculations indicate a decrease in the values of De, caused by an increase in the alginate content in the alginate sorbent beads. This is in agreement with the mechanism of the diffusion process taking place in porous carriers. Experimental data were found to be in good agreement with the mathematical model, as indicated by high values of the correlation coefficient.
Rocznik
Strony
149--163
Opis fizyczny
Bibliogr. 35 poz., rys., wykr., tab.
Twórcy
  • Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland, phone +48 52 374 90 49
  • Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland, phone +48 52 374 90 49
Bibliografia
  • [1] Biegańska M, Cierpiszewski R. Utilization of agricultural and industrial wastes for metal removal from aqueous solutions. Polish J Chem Technol. 2011;13,1:20-22. DOI: 10.2478/V10026-011-0004.
  • [2] Argun ME, Dursun S, Ozdemir C, Karatas M. Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics. J Hazard Mater. 2007;141:77-85. DOI: 10.1016/J.Jhazmat.2006.06.095.
  • [3] Rozada F, Otero M, Morán A, García AI. Adsorption of heavy metals onto sewage sludge-derived materials. Bioresour Technol. 2008;99:6332-6338. DOI: 10.1016/j.biortech.2007.12.015.
  • [4] Meena AK, Kadirvelu K, Mishra GK, Rajagopal C, Nagar PN. Adsorption of Pb(II) and Cd(II) metal ions from aqueous solutions by mustard husk. J Hazard Mater. 2008;150:619-625. DOI: 10.1016/j.jhazmat.2007.05.011.
  • [5] Chand R, Narimura K, Kawakita H, Ohto K, Watari T, Inoue K. Grape waste as a biosorbents for removing Cr(VI) from aqueous solution. J Hazard Mater. 2009;163:245-250. DOI: 10.1016/j.jhazmat.2008.06.084.
  • [6] Dhakal RP, Ghimire KN, Inoue K. Adsorptive separation of heavy metals from an aquatic environment using orange waste. Hydrometallurgy. 2005;79:182-190. DOI: 10.1016/j.hydromet.2005.06.007.
  • [7] Ghimire KN, Inoue K, Yamaguchi H, Makino K, Miyajima T. Adsorptive separation of arsenate and aresnite anions from aqueous medium by using orange waste. Water Res. 2003;37:4945-4953. DOI: 10.1016/j.watres.2003.08.029.
  • [8] Rincon J, Gonzalez F, Ballester A, Blazquez ML, Munoz JA. Biosorption of heavy metals by chemically activated alga Fucus Vesiculosus. J Chem Technol Biotechnol. 2005;80:1403-1407. DOI: 10.1002/jctb.1342.
  • [9] Papageorgiou SK, Katsaros FK, Kouvelos EP, Nolan JW, Le Deit H, Kanellopoulos NK. Heavy metal sorption by calcium alginate beads from Laminaria Digitata. J Hazard Mater. 2006;B137:1765-1772. DOI: 10.1016/j.jhazmat.2006.05.017.
  • [10] Papageorgiou SK, Kouvelos EP, Katsaros FK. Calcium alginate beads from Laminaria digitata for the removal of Cu2+ and Cd2+ from dilute aqueous metal solutions. Desalination. 2008;224:293-306. DOI: 10.1016/j.desal.2007.06.011.
  • [11] Lai Y-L, Annadurai G, Huang F-H, Lee J-F. Biosorption of Zn(II) on the different Ca-alginate beads from aqueous solution. Bioresour Technol. 2008; 99(14):6480-6487. DOI: 10.1016/j.biortech.2007.11.041.
  • [12] Grimm A, Zanzi R, Björnbom E, Cukierman AL. Comparison of different types of biomasses for copper biosorption. Bioresour Technol. 2008;99:2559-2565. DOI: 10.1016/j.biortech.2007.04.036.
  • [13] Chojnacka K. Biosorption and bioaccumulation - The prospects for practical applications. Environ Int. 2010;36:299-307. DOI: 10.1016/j.envint.2009.12.001.
  • [14] Rajfur M, Kłos A, Wacławek M. Sorption of copper(II) ions in the biomass of alga Spirogyra sp. Bioelectrochemistry. 2012;87:65-70. DOI: 10.1016/j.bioelechem.2011.12.007.
  • [15] Huang D, Wang W, Wang A. Removal of Cu2+ and Zn2+ ions from aqueous solution using sodium alginate Adsorption Sci Technol. 2013;31(7):611-624. DOI: and attapulgite composite hydrogels. 10.1260/0263-6174.31.7.611.
  • [16] Srivastava S, Agrawal SB, Mondal MK. A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environ Sci Pollut Res. 2015;22:15386-15415. DOI: 10.1007/s11356-015-5278-9.
  • [17] Jain CK, Malik DS, Yadav AK. Applicability of plant based biosorbents in the removal of heavy metals: a review. Environ Process. 2016;3:495-523. DOI: 10.1007/s40710-016-0143-5.
  • [18] Khan TA, Mukhlif AA, Khan EA, Sharma DK. Isotherm and kinetics modeling of Pb(II) and Cd(II) adsorptive uptake from aqueous solution by chemically modified green algal biomass. Model Earth Syst Environ. 2016;2:117. DOI: 10.1007/s40808-016-0157-z.
  • [19] Yıldız S. Kinetic and isotherm analysis of Cu(II) adsorption onto almond shell (Prunus dulcis). Ecol Chem Eng S. 2017;24(1):87-106. DOI: 10.1515/eces-2017-0007.
  • [20] Cheng J, Yin W, Chang Z, Lundholm N, Jiang Z. Biosorption capacity and kinetics of cadmium(II) on live and dead Chlorella vulgaris. J Appl Phycol. 2017;29:211-221. DOI: 10.1007/s10811-016-0916-2.
  • [21] Kłos A. Determination of sorption properties of heavy metals in various biosorbents. Ecol Chem Eng S. 2018;25(2):201-216. DOI: 10.1515/eces-2018-0013.
  • [22] Chen D, Lewandowski Z, Roe F, Surapaneni P. Diffusivity of Cu2+ in calcium alginate gel beads. Biotechnol Bioeng. 1993;41:755-760. DOI: 10.1002/bit.260430212.
  • [23] Lewandowski Z, Roe F. Communication to the editor. Diffusivity of Cu2+ in calcium alginate gel beads: recalculation. Biotechnol Bioeng. 1994;43:186-187. DOI: 10.1002/bit.260430213.
  • [24] Konishi Y, Shimaoka J, Asai S. Sorption of rare-earth ions on biopolymer gel beads of alginic acid. Reactive Functional Polymers. 1998;36:197-206.
  • [25] Ibanez JP, Umetsu Y. Uptake of copper from extremely dilute solutions by alginate sorbent material: an alternative for enviromental control. Proc Copper 99-Cobre 99 Int Environ Conf. 1999; 387-397. www.jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902146055619979&rel=0.
  • [26] Veglio F, Esposito A, Reverberi AP. Copper adsorption on calcium alginate beads: equilibrium pH-related models. Hydrometallurgy. 2002;65:43-57. DOI: 10.1016/S0304-386X(02)00064-6.
  • [27] Kwiatkowska-Marks S, Wójcik M, Kopiński L. Biosorption of heavy metals on alginate beads. Przem Chem. 2011;90(10):1924-1930. www.bwmeta1.element.baztech-d10e4e16-2e7d-4d6d-a346-a7b1ca859142.
  • [28] Arica MY, Bayramoglu G, Yilmaz M, Bektas S, Genc O. Biosorption of Hg2+, Cd2+, and Zn2+ by ca-alginate and immobilized wood-rotting fungus Funalia Trogii. J Hazard Mater. 2004;B109:191-199. DOI: 10.1016/j.jhazmat.2004.03.017.
  • [29] Apel ML, Torma AE. Determination of kinetics and diffusion coefficients of metal sorption on Ca-alginate beads. Canad J Chem Eng. 1993;71:652-656. DOI: 10.1002/cjce.5450710419.
  • [30] Araujo MM, Teixeira JA. Trivalent chromium sorption on alginate beads. Int Biodeterioration Biodegrad. 1997;40:63-74. DOI: 10.1016/s0964-8305(97)00064-4.
  • [31] Kwiatkowska-Marks S, Kopiński L, Wójcik M. Conductometric determination of the effective copper ion diffusion coefficient in alginate beads. Inż Aparat Chemiczna. 2011;50,6:9-11. http://inzynieria-aparaturachemiczna.pl/rok-2011-nr-6/.
  • [32] Klimiuk E, Kuczajowska-Zadrożna M. The effect of poly(vinyl alcohol) on cadmium adsorption and desorption from alginate adsorbents. Polish J Environ Stud. 2002;11,4:375-384. www.agro.icm.edu.pl/agro/element/bwmeta1.element.agro-article-e21e2198-9aae-412a-be4e-1804db34c293?q=bwmeta1.element.agro-number-ddd87f36-30f6-4d53-aaca-2372e24ee9ee.
  • [33] Wang S, Vincent T, Faur C, Guibal E. Alginate and algal-based beads for the sorption of metal cations: Cu(II) and Pb(II). Int J Mol Sci. 2016;17:1453. DOI: 10.3390/ijms17091453.
  • [34] Arnaud J-P, Lacroix C, Castaigne F. Counterdiffusion of lactose and lactic acid in κ-carrageenan/locust bean gum gel beads with or without entrapped lactic acid bacteria. Enzyme Microbial Technol. 1992;14:715-724. DOI: 10.1016/0141-0229(92)90111-Z.
  • [35] Volesky B. Biosorption process simulation tools. Hydrometallurgy. 2003;71:179-190. DOI: 10.1016/S0304-386X(03)00155-5.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-235bb700-4cc9-4ca6-b134-bba61d3285ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.