ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNE]
SCIENTIFIC JOURNAL OF POLISH NAVAL ACADEMY

2016 (LVII) 2 (205)

DOI: 10.5604/0860889X.1219978

Hubert Wysocki*

A DISCRETE NON-CLASSICAL
OPERATIONAL CALCULUS MODEL
WITH THE HORADAM DIFFERENCE

ABSTRACT

In this paper, there has been constructed such a model of the non-classical Bittner operational
calculus, in which the derivative § related to Horadam sequences is understood as a difference

operation § {x(k)} := {x(k + 2) —ax(k + 1) — b x(k))}.
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INTRODUCTION

For any functions {f(¢)} € C 0((@, BL.R){x(n)eC ! ((a,p), R) as well as for every
fo € (o, ) C Rand ¢ € (@, B) the fundamental theorems of the integral calculus apply [1]:

4

:

d

7 ff(‘r) dr = f(1), fx’(‘r) dr = x(1) — x(ty).
o

6]

Using linear operations

t
S{x(0)) == (X0}, Tlf(0) = { f f(r)dr}, splx()) 1= {x(t)), (1)
fo

we can present the above theorems as follows:
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STy f =f, Tip,Sx=x—s4x, (2)
where f = {f(D)}, x = {x()}1.

Apart from the model (1) with the classical ordinary derivative § = d/dt,
there exist other continuous and discrete models in which, for appropriately de-
termined operations S, T, s,, properties (2) hold. These models constitute particular

cases (representations) of the so-called non-classical Bittner operational calculus [2-5].
Broadly speaking, the Bittner operational calculus is a system

co(®, L', 8. T,.s,. Q%2 (3)

in which 2% and L' are linear spaces (over the same scalar field 77) such that L' < .°.
The linear operation S : L' — L (denoted as S € Z(L', L)), called the (ab-
stract) derivative, is a surjection. Moreover, (J is a set of indices ¢ for the operations
T, € 2" L") and s, € Z(L', L") such that ST, f = f, f € L” and s,x = x — T, S x,
x ¢ L. These operations are called integrals and limit conditions, respectively. The
kernel of §, i.e. Ker S is a set of elements understood as constants for the derivative
§. The limit conditions s, g € Q are projections of L on the subspace Ker S.

Beside the continuous model (2), we frequently use a classical discrete
model with the derivative S understood as the forward difference A.

Let N and C mean the set of non-negative integers and the set of complexes,
respectively. Moreover, let L° := C(¥y, C) be a linear space of complex sequences
x = {x(k)}kert, with usual sequences addition and sequences multiplication by com-

plexes. In [2, 3, 5] Bittner considered a model with the derivative
Sx=Ax = {x(k+ 1) — x(k)}

and its corresponding integral

0 for k=0
=) k=1
To¥: =05 i) for k>0 > KEMNo
=0
and limit condition
sox := {x(0)},

where x = {x(k)} € L' = L°.

1 {f(#)} stands for the symbol of the function f,i.e. ' = {f(#)}, whereas f(t) denotes the value of
the function { f(f)} at point 7. This notation is derived from J. Mikusinski [15].
2 (O stands for the French ‘calcul opératoire’ (operational calculus).
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Later, in [6] there appeared a model with the forward difference § = A, integrals

ko—1

- 3 x(i) for k <k
i=k

Tiyx = 0 for k=ky ., kel
k-1
> x(i)y for k>ko
i=kp
and limit conditions

Sip X 1= {x(ko)l,
where ky = g € Q := Ny.

Notice that the integrals 7y, can be shown as follows

k-1 ko—1

nﬂz{zzﬂnfzzxmk.

i=0 i=0

In this paper, we shall discuss other discrete models of the Bittner opera-
tional calculus related to the operation

S{x(k)} = {x(k +2) —ax(tk + 1) — bx(k)}, 4)

where g, b € Cand b # (.

We will consider two cases:
D:=a*+4b#0 and D =0.

In literature (e.g. [7, 12, 14, 16]), each element ¢ belonging to the kernel of
the operation (4) is called a Horadam sequence [8, 9].
In particular, the Horadam sequence ¢ = {c(k)} € Ker S, i.e. a solution of the
equation
ck+2y=aclk+1)+bck), keNg, (5)

can be [10]:
— the Fibonacci sequence {F (k)} (fora=b =1, F(0)=0,F(1)=1)

{Fy=10,1,1,2,3,5,8,13,21,34, 55,89, 144,233, .. .};

3 Given the definition of T}, we assume that E:;IU x(i) :=0.
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— the Lucas sequence { £L(k)} (fora=b=1,L0)=2, L(1)=1)
{L(k)} =12,1.3,4,7,11,18,29,47,76,123,199,322,521,.. .};
— the Pell sequence {‘P(k)} (fora=2,b=1,P0)=0,P(1)=1)
{P(k)} =10,1,2,5,12,29,70,169,408,985,2378, 5741, 13860, 33461, .. .};
— the Pell-Lucas sequence { p(k)} (fora =2,b = 1, p(0) = 2, p(1) = 2)
{p(k)} ={2,2,6,14,34,82,198,478, 1154,2786, 6726, 16238,39202,94642, . . .};

— the Jacobsthal sequence | f{k)} (fora=1,b=2,7(0)=0,9(1) = 1)
{(J(k)}) =1{0,1,1,3,5,11,21,43,85,171, 341,683, 1365,2731, .. .};

— the Jacobsthal-Lucas sequence {j(k)} (fora = 1,b = 2,j(0) = 2,j(1) = 1)
{j(k)} =12,1,5,7,17,31,65,127,257,511, 1025, 2047,4097,8191, ... .}.
Another interesting example is also an anti-forward Fibonacci sequence
{f (k) for whicha = —1,b = 1, £(0) = 0, £(1) = 1. Then, we have
flk+2)=-[fthk+ D) - f)]l = fk)=fk+ 1)+ f(k+2), keDN,,
\-—,—/
Af (k)

from which we obtain

{f(k)} ={0,1,-1,2,-3.5,-8,13,-21,34, -55,89, 144,233, .. .}.

We also have

f) =D Fk), ke N. (6)

In [13] Kalman and Mena presented two-term recurrences (5) and related
Horadam sequences in the operational approach, using classical difference operations.

A MODEL WITH THE HORADAM DIFFERENCE, WHEN D # 0

In what follows, we shall call the operation (4) a Horadam derivative or
difference.
Let

a+ VD a- D

DPyp = ——, Pab = D)

, D=0
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Then, we have
@i_b —a®.p—b=0, 903,;, —a@.p—b=10
and
Pup+@ap =a, Pap—wap = VD, Duppap = —b.

We will prove the following

Theorem 1. The system (3), where x ={x(k)}e L= L!:=C(Ny,C),
ko =g € Q:=Nyand

={xtk+2)—axtk+1)-bx(k)}, (7)

kD 1 )

(@8O for k< ko
1 i=k—1
Ti,x = ﬁ - | 0 for k=kypkyo+1, keNy, (8)
(PN — (i) for k> ko + 1
i=ko ’
1 1 ko Kk

SkoX 1= { @[b(qbk o IR x(ko) + (D)0 — b o) xtho + 1)]}, 9)

forms a discrete model of the Bittner operational calculus with the Horadam diffe-
rence (7), when D + 0.

Proof. It is obvious that (7) - (9) are linear operations. It is also easy to
verify that Ty, can be presented in the form of

k=2 ko1

i=0

=0

where 37 x(i) := 0 for j = =2, ~1.

Let {y(k)} := Ty, {x(k)}. Hence
Sy} = {ytk +2) —ayk + 1) — by(k))

| k kp—1 '
= {ﬁ([ DB = () = Y@k = @k () ]
=0 i=0
k-1 . . k07] H 7
—al D (@ - gty = @k = (i ]
i=0 i=0
ko—1

Z(@A a0 - D@l raol)|
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1
= {ﬁ((@a,b = Qap)x(k) + (D], — ¢oy — A(Pap — Pap))x(k — 1)
+Z (B2, —adp— DYPT — (2, — apap — b3k, Tx0)
i=0

ko—1
= B, — aPay = DB = (52, — agas — ek 1D )} = Lk,

so 8 Ty {x(k)} = {x(k)} holds.

Let {£(k)} := S{x(k)) = {x(k +2) — ax(k + 1) — b x(k)}. Then
Ty, S{x(R)} = Tio | f(K))
1 & . . ko] . .
= (=l D@ =i = Y@l el s )|
i=0 i=0
1 k-2 ko—1

= _[ ( i\' 1-i _ (pa -1- ',)x(l + 2) _ (@f\ 1-i ‘Pi\;,_]_i)x(f'i' 2)

{ \/5 - b b % b

ko—1

k-2
aZ(dﬁ‘ O *)x(:+1)+aZ(qo‘ = (i + 1)

Agl

_bZ(Qk 1-i (Pab] r)x(l)_i_bZ(@.( 1- f_@ab] ')X(I)]}

.l'(0+]

{ Z@"*” gty — Z@"““ Cap (D)

—a Z(@i;;;' — ¢khx(i) +a Z(@ﬁ;f — k(i)
i=1 i=1
k-2 ko—1 )
b 3 (@ = gk + b Z(@k g 1)
i=0
1
= {ﬁ[ (Pasy = Pap)x(k) + (P, — @2 ) — APy — @ap)) Xk — 1)
+ Z —a®Pyp = bYPL ) = (@l — agas — bk, T x()

i=2

—(@ wa},ko)x(ko +1)
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ko

= Y (@2, —adyy, = DY, T = (2, — agan - by ()
i=2

b = g 1) ]}

= o= {T[”(@A 10— gl 0xtko) + (@10 - ¢tk + 1)),

Therefore, Ty,S {x(k)} = {x(k)} — sk, {x(k)} also holds, which completes the proof. O

Example 1. It is not difficult to check (see Th. 3[5]) that an abstract diffe-
rential equation

Sx=f fellxel
with the limit condition

SqX =cCog4, Cog € KerS§
has exactly one solution

x=coq+T,f. (10)

A. In particular,

14 V3 (-1-\B
== (5]

is the solution of the homogeneous difference equation

xk+2)+xtk+ D) —xh)=0, kelNy

kEN()

with initial conditions
x(0)=0,x(1) =1,

which results from the limit condition form (9) fora = -1, = land k3 = 0

Hence we have

ko
k) = (1 L 1+\/§) _(1 V5

\/5[( 2 2 )k] ¥ € No-

Itis a form (6) of the anti-forward Fibonacci sequence { f (k)} general term, where

1+\/_) (1—\/5’

F )= vg[( 2 2 ﬂ ke No

is a well-known Binet formula of the Fibonacci sequence { F (k)} general term.
B. For the Cauchy problem
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Th+2)- Thk+1)-27(k) =3, keNy (11)
F0)=0,7(1)=1

we have a = 1,b = 2 and for ky = 0, on the basis of (10), we obtain

k-2
T (k) = %[2" —(-D)*+3 Z(zk—‘—" — (=1 = é(z"+3 +(-1*-9), keNy.
i=0

Similarly, if
FTk+2)—Thky=2 kel (12)
T0)=0,7()=1,

thena = 0,5 = 1and for ky = 0, we get
| k=2 o |
T (k) = E[] —(-1)f + Z(] — (~DF1h 22 = 6(2’“3 + (=% -9), keN,.
i=0
The sequence {.7 (k)}, defined with the use of Jacobsthal numbers as

7(0) for k=0

Tk) = kjl(l) for k=1 ,
2 J) for keNp\{0,1)
=2

was introduced in [11], where Horadam gave a number of its properties, including
(11) and (12).

A MODEL WITH THE HORADAM DIFFERENCE, WHEN D = 0

If the Horadam difference (4) takes a particular form of
1
S{x(k)} = {x(k +2)—axtk+ 1)+ Zaz x(k}},

then D = (. For this case, we will prove.

Theorem 2. The system (3), where x ={x(k)} €L’ =L':=C(N,,C),
ko =qge€ Q:=Nypand

S{x(k)} = {x(k +2)—axtk+ 1)+ %az x(k)}, (13)
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k-2 k-2 P ko—1

Tix = {(%) [Z(%)(k — 1= i)x(i) - Z(%)i(k — 1= i) x(i) } (14)
i=0 i=0
S 1= {—(g)k_k”[(k 1k xtky) - 2 kK ko + D[} (19)

forms a discrete model of the Bittner operational calculus with the Horadam diffe-
rence (13).

Proof. Similarly as before, the operations (13)-(15) are linear. Moreover, if
{y(k)} := Ty, {x(k)}, then

Sy = {}’(k +2)—aylk+1)+ Alfflz }-‘(k)}

. ayki “ kuilai‘_" o
= {;;(E) (k+1-10x(i) - ;(5) (k+1—1)x(i)
k=l ki kool k=i
-2 ) (5) (k — i) x(i) + 2 ;(5) (k — i) x(i)
; Aj(g)k(k — 1 - ) x(i) - E(E)R(k - 1= )x00)
_ {x(k) + ki(g)k_f[(k 1oy =20k =)+ (k=1 - i)] x(0)
i=0
_tmi(g)k_i[(k +1-D-2k—i+k-1- i)] x(i)} = {x(h)}.
i=0

If, in turn, { f(k)} := S{x(k)} = {x(k +2) —ax(k + 1) + %az x(k)}, then

T, S{x(k)} = Ty { S (K}
k

_ {(g)k[Zj(g)(k =) - RZﬂl(g)(fc 1= 0|}
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- {(g)kz[ H(%)i(k S 1-Dx(i+2) - %Zl(%)i(k 1) x(i+2)

i=0 i=0

k-2 i ko—1

_aZ(z (k=1-i)xi+1)+a Z(%)f(k— 1= i)x(i+1)

i=0 ) =0

(3=}

+(9)2i %)i(k ~ 1 D)) - (E)zkozl(g)i(k - 1-iyxi |
2 A 2} T
_ {g(g)k(_k +1— ) x(i) —E(g)k(_k +1 - i) x(i)
L o ko k=i o
) > (5) (k — i) x(i) + 2;(5) (k — i) x(i)
2avk o " ayki N
+ ;—o(i) (k—1-1i)x(i) - ;(E) (k—1- l)X(i)}

_ {x(k) T ki(%)ki[(k 1D -2k D+ (k—1- i)] xG0)
i=2

‘(E)HU“]‘ — ko) xtho + 1) - (g)kﬁi + 1= ko) x(ho) + 2(%);((? ~ ko) x(ho)

k()—l k—i

_Z;(g) [(k+ I —i)—2(k—i)+(k—l—i)]x(i)}

= ()} - {(g)“[ (k— 1 — ko) x(ko) % (k ko) xtho + 1) |

= {x(k)} — sgo{x(k)}.
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MODEL DYSKRETNY
NIEKLASYCZNEGO RACHUNKU OPERATOROW
Z ROZNICA HORADAMA

STRESZCZENIE

W artykule skonstruowano model nieklasycznego rachunku operatoréw Bittnera, w ktérym
pochodna S, zwigzana z ciggami Horadama, rozumiana jest jako operacja réznicowa

S{x(b)} = {xtk+2)—ax(k+1)—bx(k)).

Stowa kluczowe:

rachunek operatoréw, pochodna, pierwotne, warunki graniczne, réznica Horadama.
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