Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Synthesis of indium tin oxide (ITO) nanoparticles by reflux method without chlorine contamination at different pHs, temperatures, solvents and concentrations has been studied. Indium chloride, tin chloride, water, ethanol and Triton X-100 were used as starting materials. Structure, size, surface morphology and transparency of indium tin oxide nanoparticles were studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and UV-Vis spectrophotometry. XRD patterns showed that 400 °C is the lowest temperature for synthesis of ITO nanoparticles because metal hydroxide does not transform to metal oxide in lower temperature. FT-IR results showed the transformation of hydroxyl groups to oxide. SEM images showed that pH is the most important factor affecting the nanoparticles size. The smallest nanoparticles (40 nm) were obtained at pH = 8.8. The size of crystallites was decreased by lowering of concentration (0.025 M).
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
799--805
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Department of Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran
autor
- Department of Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran
autor
- Department of Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran
Bibliografia
- [1] GAO Y., ZHAO G., DUAN Z., REN Y., Mater. Sci.- Poland, 32 (2014), 66.
- [2] LIU Y., ŠTEFANIĆ G., RATHOUSKY J., HAYDEN O., BEIN T., FATTAKHOVA-ROHLFING D., Chem. Sci., 3 (2012), 2367.
- [3] DOMARADZKI J., KACZMAREK D., DRABCZYK K., PANEK P., Mater. Sci.-Poland, 33 (2015), 363.
- [4] RAJABI N., HESHMATPOUR F., MALEKFAR R., Mater. Sci.-Poland, 32 (2014), 102.
- [5] SHI J., SHEN L., MENG F., LIU Z., Mater. Lett., 182 (2016), 32.
- [6] POHL A., DUNN B., Thin solid films, 515 (2006), 790.
- [7] SONG S., YANG T., LIU J., XIN Y., LI Y., HAN S., Appl. Surf. Sci., 257 (2011), 7061.
- [8] QIANG X.B., KANG F.R., BIN Y., YONG D., Trans. Nonferrous Met. Soc. China, 20 (2010), 643.
- [9] ZHANG D., TAVAKOLIYARAKI A., WUB Y., VAN SWAAIJ R.A., ZEMAN M., Energy Procedia, 8 (2011), 207.
- [10] ZHANG H., YE F., LIU L., XU H., SUN C., J. Alloys Compd., 504 (2010), 171.
- [11] MEHTA V., COOPER J., J. Power Sources, 114 (2002), 32.
- [12] XU S., SHI Y., Sens. Actuat. B., 143 (2009), 71.
- [13] PATEL N.G., PATEL P.D., VAISHNAV V.S., Sens. Actuat. B., 96 (2003), 180.
- [14] PATEL N.G., MAKHIJA K.K., PANCHAL C.J., Sens. Actuat. B., 21 (1994), 193.
- [15] PATEL N.G., MAKHIJA K.K., PANCHAL C.J., DAVE D.B., VAISHNAV V.S., Sens. Actuat. B., 23 (1995), 49.
- [16] LUO S., OKADA K., KOHIKI S., TSUTSUI F., SHIMOOKA H., SHOJI F., Mater. Lett., 63 (2009), 641.
- [17] DELACY G., LACEY S., ZHANG D., VALDES E., HOANG K., Mater. Lett., 117 (2014), 108.
- [18] KYU-JEON M., KANG M., Mater. Lett., 62 (2008), 676.
- [19] XIE-BIN Z., TAO J., GUAN-ZHOU Q., BAI-YUN H., Trans. Nonferrous Met. Soc. China, 19 (2009), 752
- [20] WOOD S., SAMSON I., Ore. Geol. Rev., 28 (2006), 57.
- [21] JIANG L., SUN G., ZHOU Z., SUN S., WANG Q., YAN S., LI H., TIAN J., GUO J., ZHOU B., XIN Q., J. Phys. Chem. B., 109 (2005), 8774.
- [22] YU D., YU W., WANG D., QIAN Y., Thin solid films, 419 (2002), 166.
- [23] THOMAS HE Y., WANG J., TOKUNAGA T., J. Nanapart. Res., 10 (2008), 321.
- [24] KIM K.Y., PARK S.B., Mater. Chem. Phys., 86 (2004), 210.
- [25] SILVA G.M, FARIA DE E.H., NASSAR E.J., CIUFFI K.J., CALEFI P.S., Quim. Nova., 35 (2012), 473.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23539d4e-346d-4eff-9335-cc948ced2c84