Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Water quality is essential for a healthy life, so it is necessary to look for technologies to measure its parameters in real time and automatically. The purpose of this study was to implement and determine the reliability of an automated system to evaluate the organoleptic water quality intended for human consumption, in the urban distribution network of the district of Daniel Hernandez (Peru), using a programmable logic controller (PLC) and Simulink. The study was carried out from January to March 2024, corresponding to the rainfall season. In the process of the research, a data acquisition and processing algorithm was implemented in a Simatic S7 1500 PLC with analog input module; using the national sanitation foundation water quality index (NSF-WQI) methodology. The work focused on five key water parameters: potential hydrogen (pH), electrical conductivity (EC), turbidity, free chlorine (FCL) and temperature. The methodology included programming in contact language (KOP) of the algorithm for calculating subscripts for each parameter, according to the functions established by NSF-WQI. Measurements were performed with 4-wire sensing devices with 4–20 mA current signals, ensuring data accuracy. The interface to visualize the parameters and the water quality index was implemented in Simulink, communicating via OPC UA with the PLC server, facilitating the graphical representation of the organoleptic water quality index. The overall equipment efficiency (OEE) or automated system implemented was 90.56%, indicating its acceptable reliability for evaluating water quality. By performing the measurements, with the sensors of the five parameters immersed in tap water, at each of the three established sampling points (Dwelling_1, Dwelling_2 and Dwelling_3) along the water distribution network, the system facilitated the automated and real-time evaluation of the quality, resulting in an average NSF-WQI of 83.08%, classifying the water as good for human consumption. This information is important for water quality management and can guide future treatments to achieve better quality.
Wydawca
Rocznik
Tom
Strony
207--220
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- Facultad de Ingeniería Electrónica-Sistemas, Universidad Nacional de Huancavelica, Jr. La Mar 755, Pampas 09156, Huancavelica, Perú
- Facultad de Ingeniería Electrónica-Sistemas, Universidad Nacional de Huancavelica, Jr. La Mar 755, Pampas 09156, Huancavelica, Perú
- Facultad de Ciencias Forestales y del Ambiente, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla 3909-4089, Huancayo 12006, Junín, Perú
autor
- Facultad de Ciencias Forestales y del Ambiente, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla 3909-4089, Huancayo 12006, Junín, Perú
autor
- Facultad de Ingeniería Mecánica, Universidad Nacional de Ingeniería, Av. Túpac Amaru 21036, Lima 15333, Perú
- Facultad de Ingeniería Electrónica-Sistemas, Universidad Nacional de Huancavelica, Jr. La Mar 755, Pampas 09156, Huancavelica, Perú
Bibliografia
- 1. Al Chalabi, A.S., Naeem, S.M., Al-Marj, O.K. 2022. Assessment of WQI for the Al-Jubalia Water Treatment Plant. Journal of Ecological Engineering, 23(10), 216–228. https://doi.org/10.12911/22998993/152517
- 2. Bai, Z.Q., Dai, M., Wei, Q.Y., Zhang, Z.S. 2018. An OEE improvement method based on TOC. In: 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 1–6. https://doi.org/10.1109/M2VIP.2018.8600875
- 3. Banda, T.D., Kumarasamy, M.A. 2020. Review of the existing water quality indices (WQIs). Pollution Research, 39(2), 489–514.
- 4. Bhade, S., Hegde, S. 2020. Improvement of overall equipment efficiency of machine by SMED. Materials Today: Proceedings, 24, 463–472. https://doi.org/https://doi.org/10.1016/j.matpr.2020.04.298
- 5. Bharti, N, Katyal, D. 2011. Water quality indices used for surface water vulnerability assessment. International Journal of Environmental Sciences, 2(1), 154–173. https://doi.org/10.6088/ijes.00202010017
- 6. Bonett, D., Sánchez, A., Calle, N., Gutiérrez, C., Mendoza, D. 2020. Peru: forms of access to water and basic sanitation (in Spanish). National Institute of Statistics and Informatics, June, 1–70. https://www.inei.gob.pe/media/MenuRecursivo/boletines/boletin_agua.pdf
- 7. Brown, R., Mcclelland, N.I., Deini, R. 1972. Indicators of Environmental Quality. Environmental Science Research, 1(1), 173–182.
- 8. Cabral, J., Dorofeev, K., Varga, P. 2020. Native OPC UA Handling and IEC 61499 PLC Integration within the Arrowhead Framework. In: IEEE Conference on Industrial Cyberphysical Systems (ICPS), 1, 596–601. https://doi.org/10.1109/ICPS48405.2020.9274768
- 9. Carbajal-Morán, H., Zárate Quiñones, R.H., Márquez Camarena, J.F. 2021. Gray water recovery system model by solar photocatalysis with TiO2 nanoparticles for crop irrigation. Journal of Ecological Engineering, 22(4), 78–87. https://doi.org/10.12911/22998993/134034
- 10. Chong, K.E., Ng, K.C. 2016. Relationship between overall equipment effectiveness, throughput and production part cost in semiconductor manufacturing industry. In: IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 75–79. https://doi.org/10.1109/IEEM.2016.7797839
- 11. El Zerk, A., Ouassaid, M., Zidani, Y. 2023. Development of a real-time framework between MATLAB and PLC through OPC-UA: A case study of a microgrid energy management system. Scientific African, 21, e01846. https://doi.org/https://doi.org/10.1016/j.sciaf.2023.e01846
- 12. Falkenmark, M. 2020. Water resilience and human life support - global outlook for the next half century. International Journal of Water Resources Development, 36(2–3), 377–396. https://doi.org/10.1080/07900627.2019.1693983
- 13. Fatima, S.U., Khan, M.A., Siddiqui, F., Mahmood, N., Salman, N., Alamgir, A., Shaukat, S.S. 2022. Geospatial assessment of water quality using principal components analysis (PCA) and water quality index (WQI) in Basho Valley, Gilgit Baltistan (Northern Areas of Pakistan). Environmental Monitoring and Assessment, 194(3), 151. https://doi.org/10.1007/s10661-022-09845-5
- 14. Gleick, P.H. 1996. Basic water requirements for human activities: Meeting basic needs. Water International, 21(2), 83–92. https://doi.org/10.1080/02508069608686494
- 15. Gupta, S., Gupta, S.K. 2021. A critical review on water quality index tool: Genesis, evolution and future directions. Ecological Informatics, 63, 101299. https://doi.org/10.1016/j.ecoinf.2021.101299
- 16. Herng, L.K., Hee, Q.C. 2018. New benchmarked standard in yield and OEE improvement - SENS PSSO STS Gen2 taper performance improvement with breakthrough innovative solutions. In: IEEE 38th International Electronics Manufacturing Technology Conference (IEMT), 1–5. https://doi.org/10.1109/IEMT.2018.8511730
- 17. Horton, R.K. 1965. An index number system for rating water quality. J Water Pollut Control Fed, 37(3), 300–306.
- 18. MINAM. 2017. Environmental Quality Standards (EQS) for Water (in Spanish). El Peruano, 19. https://cutt.ly/awRSCsPy
- 19. MINSA-DIGESA. 2009. Organoleptic Parameters of Water (in Spanish). http://www.digesa.minsa.gob.pe/DEPA/informes_tecnicos/Grupo de uso 1.pdf
- 20. Nobre, R.L.G., Caliman, A., Cabral, C.R., Araújo, F. de C., Guérin, J., Dantas, F. da C.C., Quesado, L.B., Venticinque, E.M., Guariento, R.D., Amado, A.M., Kelly, P., Vanni, M.J., Carneiro, L.S. 2020. Precipitation, landscape properties and land use interactively affect water quality of tropical freshwaters. Science of The Total Environment, 716, 137044. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.137044
- 21. Nong, X., Shao, D., Zhong, H., Liang, J. 2020. Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method. Water Research, 178, 115781. https://doi.org/10.1016/j.watres.2020.115781
- 22. Noori, R., Berndtsson, R., Hosseinzadeh, M., Adamowski, J. F., Abyaneh, M.R. 2019. A critical review on the application of the National Sanitation Foundation Water Quality Index. Environmental Pollution, 244, 575–587. https://doi.org/10.1016/j.envpol.2018.10.076
- 23. Oliveira, A.M., Pereira, M. 2020. Poverty and food insecurity may increase as the threat of COVID-19 spreads. Public Health Nutrition, 23(17), 3236– 3240. https://doi.org/10.1017/S1368980020003493
- 24. REMOND. 2020. pH sensor instruction. http://www.beyondsolutions.co.za/Images/default/20122901382847.pdf
- 25. REMOND. 2023a. Digital conductivity sensor industrial conductivity probe RS485 TDS sensor EC sensor probe. https://www.aliexpress.com/item/1005004105525769.html
- 26. REMOND. 2023b. Digital Turbidity Sensor RS485 Industrial Online TSS Probe Turbidity Probe Sensor for River Monitoring. https://www.aliexpress.com/i/1005005669917487.html
- 27. Saini, V., Shah, P., Sekhar, R. 2022. Matlab and simulink for building automation. 2022 IEEE Bombay Section Signature Conference (IBSSC), 1–6. https://doi.org/10.1109/IBSSC56953.2022.10037485
- 28. Siemens. 2019. OPC UA Server & Client. https://cutt.ly/fwRDrmww
- 29. Singh, J., Yadav, P., Pal, A.K., Mishra, V. 2020. Water pollutants: Origin and status BT-sensors in water pollutants monitoring: Role of material (D. Pooja, P. Kumar, P. Singh, & S. Patil (Eds.); 5–20). Springer Singapore. https://doi.org/10.1007/978-981-15-0671-0_2
- 30. Vejjanugraha, P., Tiwatthanont, K., Vichaidis, N., Yatsungnoen, T., Charoenpong, P., Wansopa, S., Suasaming, A., Boonsieng, P. 2022. An automated data analytics and overall equipment effectiveness visualization technique for assembly line on continuous manufacturing system using Power BI. In: 7th International Conference on Business and Industrial Research, 562–567. https://doi.org/10.1109/ICBIR54589.2022.9786497
- 31. WHO. 2021. Manganese in drinking water: background document for development of WHO guidelines for drinking-water quality. World Health Organization. https://iris.who.int/bitstream/handle/10665/350933/WHO-HEP-ECH-WSH-2021.5-eng.pdf?sequence=1
- 32. WHO. 2022. Guidelines for drinking-water quality: incorporating the first and second addenda. World Health Organization. https://cutt.ly/vwM8Ekui
- 33. Yalaletdinova, A.V, Kantor, E.A., Galimova, Y.O. 2021. Drinking-water quality risk assessment based on parameters with organoleptic (taste and odor) effects observed in water from surface water intake and infiltration water intake facilities. IOP Conference Series: Earth and Environmental Science, 670(1), 12046. https://doi.org/10.1088/1755-1315/670/1/012046
- 34. Yuan, M., Alghassi, A., Zhao, S.F., Wu, S.W., Muhammad, A., Cui, J., Myo, K.S. 2021. Online overall equipment effectiveness (OEE) improvement using data analytics techniques for CNC machines BT-implementing Industry 4.0: The model factory as the key enabler for the future of manufacturing (C. Toro, W. Wang, & H. Akhtar (Eds.); 201–228). Springer International Publishing. https://doi.org/10.1007/978-3-030-67270-6_8
- 35. Zhu, M., Wang, J., Yang, X., Zhang, Y., Zhang, L., Ren, H., Wu, B., Ye, L. 2022. A review of the application of machine learning in water quality evaluation. Eco-Environment & Health, 1(2), 107–116. https://doi.org/10.1016/j.eehl.2022.06.001
- 36. Zibane, F., Telukdarie, A. 2021. Reliability and maintainability of a forging plant. In: IEEE Technology & Engineering Management Conference - Europe (TEMSCON-EUR), 1–7. https://doi.org/10.1109/TEMSCON-EUR52034.2021.9488588
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23534834-1e47-49fb-8906-9598f3aa8f78