PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High Temperature Oxidation Property of Ni Based Superalloy CM247LC Produced Via Selective Laser Melting Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
CM247LC alloy was manufactured by using selective laser melting (SLM) process, one of the laser powder bed fusion (L-PBF) methods. The hot isostatic pressing (HIP) process was additionally conducted on the SLM-built CM247LC to control its microstructures and defects. The high temperature oxidation property was investigated, and it was compared with conventional DS247LC sample (reference) prepared via the directional solidification process. The L-PBF HIP sample showed blocky-type MC carbides generated along the grain boundary with average size of about 200 nm. A semi-spherical primary γ' phase of size 0.4-1.0 μm was also observed inside the grains. Moreover, the DS247LC sample displayed a coarse eutectic γ' phase and many script-type MC carbides. Furthermore, cuboidal-type γ' with an average size of about 0.5 μm was detected. High-temperature oxidation tests were conducted at 1000°C and 1100°C for 24 hours. The results at 1100°C oxidation temperature showed that the measured oxidation weight gains for HIP and DS247LC were 1.96 mg/cm2 and 2.26 mg/cm2, respectively, indicating the superior high-temperature oxidation resistance of the L-PBF HIP sample. Based on the above results, a high-temperature oxidation mechanism of the CM247LC alloys manufactured by the SLM process and the directional solidification process has been proposed.
Twórcy
autor
  • Inha University, Department of Materials Science and Engineering, Incheon 22212, Republic of Korea
  • Korea Institute of Materials Science, Changwon 51508, Republic of Korea
  • Korea Institute of Materials Science, Changwon 51508, Republic of Korea
autor
  • Inha University, Department of Materials Science and Engineering, Incheon 22212, Republic of Korea
Bibliografia
  • [1] P. Liu, R. Zhang, Y. Yuan, C. Cui, Y. Zhou, X. Sun, J. Alloys Compd. 831, 154618 (2020).
  • [2] C.L. Yang, Z.J. Zhang, P. Zhang, C.Y. Cuic, Z.F. Zhang, Mater. Sci. Eng. A 736, 100-104 (2018).
  • [3] L.N. Carter, C. Martin, P. J. Withers, M. M. Attallah, J. Alloys Compd. 615, 338-347 (2014).
  • [4] M. Chiou, S. Jian, A. Yeh, C. Kuo, J. Juang, Mater. Sci. Eng. A 655, 237-243 (2016).
  • [5] I.S. Kim, B.G. Choi, J.E. Jung, J.H. Do, W.Y. Seok, Y.H. Lee, I.Y Jeong, Mater. Charact. 165, 110378 (2020).
  • [6] J. Tiley, G.B. Viswanathan, J.Y. Hwang, A. Shiveley, R. Banerjee, Mater. Sci. Eng. A 528, 32-36 (2010).
  • [7] L. Heep, C. Schwalbe, C. Heinze, A. Dlouhy, C.M.F. Rae, G. Egeler, Scripta. 190, 121-125 (2021).
  • [8] E.O. Ezugwu, E.M. Wang, A.R. Machado, J. Mater. Process. Technol 86, 1-16 (1999).
  • [9] S. Griffiths, H. Ghasemi Tabasi, T. Ivas, X. Maeder, A. De Luca, K. Zweiacker, R. Wróbel, J. Jhabvala, R.E. Logé, C. Leinenbach, Addit. Manuf. 36, 101443 (2020).
  • [10] S. Catchpole-Smith, N. Aboulkhair, L. Parry, C. Tuck, I.A. Ashcroft, A. Clare, Addit. Manuf. 15, 113-122 (2017).
  • [11] R.M. Moreno, V.D. Divya, S.L. Driver, O.M.D.M. Messé, T. Illston, S. Baker, M.A. Carpenter, H.J. Stone, Mater. Sci. Eng. A 674, 529-539 (2016).
  • [12] N.J. Harrison, I. Todd, K. Mumtaz, Acta. 94, 59-68 (2015).
  • [13] W. M. Tucho, V. H. Lysne, H. Austbø, A. S. Kverneland, V. Hansen, J. Alloys Compd. 740, 910-925 (2018).
  • [14] X. Wang, L. N. Carter, B. Pang, M. M. Attallah, M. H. Loretto, Acta Mater. 128, 87-95 (2017).
  • [15] A. Yang, Y. Xiong, L. Liu, Sci. Technol. Adv. Mater. 2, 105-107 (2001).
  • [16] Y.J. Kang, S.S. Yang, Y.K. Kim, B. AlMangour, K.A. Lee, Corr. Sci. 158, 108082 (2019).
  • [17] F.H. Latief, K. Kakehi, X. Fu, Int. J. Electrochem. Sci. 7, 7608-7618 (2012).
  • [18] Y.K. Kim, J.H. Kim, Y.J. Kim, D.N. Seidman, K.A. Lee, Corr. Sci. 174, 108833 (2020).
  • [19] M.S. Chiou, A.C. Yeh, S.R. Jian, C.M. Kuo, Adv. Mat. Res. 922, 61-66 (2014).
  • [20] M.S. Chiou, S.R. Jian, A.C. Yeh, C.M. Kuo, Int. J. Electrochem. Sci. 10, 5981-5993 (2015)
  • [21] M. Dressler, M. Nofz, I. Dörfel, R. Saliwan-Neumann, Thin Solid Films 520, 4344-4349 (2012).
  • [22] Y. Luo, B. Zhang, Z. Song, C. Li, G. Chen, G. Zhang, J. Mater. Res. 35, 2036-2045 (2020).
  • [23] J. Ma, W. Jiang, J. Wang, Y. Zhang. Z. Zhang, Sci. Rep. 10, 1-9 (2020).
  • [24] H.T. Mallikarjuna, W.F. Caley, N.L. Richards, Corr. Sci. 147, 394-405 (2019).
Uwagi
1. This work was supported by the Korea Evaluation Institute of Industrial Technology (KEIT) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20011103).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23518483-63dc-45e7-80ae-a555cd2a4896
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.