PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shape accuracy in single point incremental forming of conical frustums from titanium CP2 sheets

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Dokładność kształtu w jednopunktowym kształtowaniu przyrostowym stożków ściętych z blach tytanowych CP2
Języki publikacji
EN
Abstrakty
EN
This paper presents frustum cone drawpiece analysis made of titanium CP2 sheet by a single incremental sheet forming. Central composite design has been adopted to carry out an experiment containing 20 runs, then multi-criteria parameter optimization has been done. Optimal parameters have been validated and responses deviations do not exceed 4% compared to created models. For the drawpiece formed with optimal parameters, AGRUS optical measurement and X-ray tomography has been applied to check the obtained of the part wall thickness and general deviations compared to the CAD model. The wall angle discrepancy of the cone generatrix has also been analyzed. No gaps or ruptures have been confirmed by X-ray. The blank rolling direction has a significant effect on the drawpiece deviations. The measurement results showed deviations of the drawpiece wall angle +0.27°/- 0.06°, sheet thickness on the cone +0.012/-0.04 mm and +0.151/-0.096 mm from the reference CAD geometry.
PL
W pracy przedstawiono analizę wytłoczek w kształcie stożka ściętego wykonanego z blachy tytanowej CP2 metodą jednopunktowego przyrostowego kształtowania. Do przeprowadzenia eksperymentu obejmującego 20 przebiegów przyjęto centralny plan kompozycyjny, następnie dokonano wielokryterialnej optymalizacji parametrów. Dokonano walidacji optymalnych parametrów, a uzyskane wyniki nie przekraczają 4% w odniesieniu do stworzonych modeli. Dla wytłoczki uformowanej z optymalnymi parametrami zastosowano pomiar optyczny AGRUS oraz tomografię rentgenowską w celu sprawdzenia uzyskanej grubości ścianki wytłoczki i odchyłek w porównaniu z modelem CAD. Przeanalizowano również rozbieżność kątów ścian tworzących stożka. Za pomocą skanu rentgenowskiego potwierdzono brak szczelin i pęknięć wytłoczki. Kierunek walcowania półfabrykatu ma istotny wpływ na odchyłki. Wyniki pomiarów wykazały odchylenia kąta ścianki wytłoczki +0,27/-0,06°, grubości ścianki na stożku +0.012/-0.04 mm oraz +0.151/-0.096 mm od geometrii referencyjnej CAD.
Rocznik
Tom
Strony
63--75
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
  • Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, Rzeszow University of Technology, al. Powst. Warszawy 12, 35-959 Rzeszów, Poland
  • Department of Metal Working and Physical Metallurgy of Non-Ferrous Metals, Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. Adama Mickiewicza 30, 30-059 Cracow, Poland
  • Department of Metal Working and Physical Metallurgy of Non-Ferrous Metals, Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. Adama Mickiewicza 30, 30-059 Cracow, Poland
Bibliografia
  • 1. Behera, A. K., de Sousa, R. A., Ingarao, G., & Oleksik, V. (2017). Single point incremental forming: An assessment of the progress and technology trends from 2005 to 2015. Journal of Manufacturing Processes, 27, 37-62. https://doi.org/10.1016/j.jmapro.2017.03.014
  • 2. Cédric, B., Pierrick, M., & Sébastien, T. (2020). Shape Accuracy Improvement Obtained by μ-SPIF by Tool Path Compensation. Procedia Manufacturing, 47, 1399-1402. https://doi.org/10.1016/j.promfg.2020.04.293
  • 3. Chen, J., Qian, J., & Wang, H. (2017). Study on Wall Thickness Prediction Accuracy by Sine Law for Incrementally Formed Conical Parts. Zhongguo Jixie Gong-cheng/China Mechanical Engineering, 28, 2760-2766. https://doi.org/10.3969/j.issn.1004-132X.2017.22.017
  • 4. Cheng, R., Wiley, N., Short, M., Liu, X., & Taub, A. (2019). Applying ultrasonic vibration during single-point and two-point incremental sheet forming. Procedia Manufacturing, 34, 186-192. https://doi.org/10.1016/j.promfg.2019.06.137
  • 5. Cheng, Z., Li, Y., Li, J., Li, F., & Meehan, P. A. (2022). Ultrasonic assisted incremental sheet forming: Constitutive modeling and deformation analysis. Journal of Materials Processing Technology, 299, 117365. https://doi.org/10.1016/j.jmatprotec.2021.117365
  • 6. Harhash, M., & Palkowski, H. (2021). Incremental sheet forming of steel/polymer/steel sandwich composites. Journal of Materials Research and Technology, 13, 417-430. https://doi.org/10.1016/j.jmrt.2021.04.088
  • 7. Honarpisheh, M., Ebrahimi, M. R., & Mansouri, H. (2019). Investigation of Springback Angle in Single Point Incremental Forming Process on Explosive Welded Cu/St/Cu Multilayer. Journal of Modern Processes in Manufacturing and Production, 8(3), 13-26.
  • 8. Jain, P. S., Kagzi, S. A., Patel, S., & Vasava, J. (2021). An analysis of the effect of various parameters on surface roughness, springback and thinning while performing single point incremental forming on polypropylene sheet. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 09544089211047203. https://doi.org/10.1177/09544089211047203
  • 9. Jung, K.-S., Yu, J.-H., Chung, W.-J., & Lee, C.-W. (2020). Tool Path Design of the Counter Single Point Incremental Forming Process to Decrease Shape Error. Materials, 13(21), 4719. https://doi.org/10.3390/ma13214719
  • 10. Karim, B., Mohand, O. O., Nasereddine, Z., & Sébastien, T. (2021). Investigation of the influence of incremental sheet forming process parameters using response surface methodology. Metallurgical Research & Technology, 118(4), 401. https://doi.org/10.1051/metal/2021039
  • 11. Khan, M. S., Coenen, F., Dixon, C., El-Salhi, S., Penalva, M., & Rivero, A. (2015). An intelligent process model: Predicting springback in single point incremental forming. The International Journal of Advanced Manufacturing Technology, 76(9-12), 2071-2082. https://doi.org/10.1007/s00170-014-6431-1
  • 12. Li, Y., Chen, X., Liu, Z., Sun, J., Li, F., Li, J., & Zhao, G. (2017). A review on the recent development of incremental sheet-forming process. The International Journal of Advanced Manufacturing Technology, 92(5-8), 2439-2462. https://doi.org/10.1007/s00170-017-0251-z
  • 13. Liao, J., Zhou, S., & Xue, X. (2022). Twist Springback and Microstructure Analysis of PEEK Sheets in Ultrasonic-Assisted Thermal Incremental Forming [Preprint]. In Review. https://doi.org/10.21203/rs.3.rs-1561711/v1
  • 14. Liu, Z. (2018). Heat-assisted incremental sheet forming: A state-of-the-art review. The International Journal of Advanced Manufacturing Technology, 98(9), 2987-3003. https://doi.org/10.1007/s00170-018-2470-3
  • 15. Martins, P. A. F., Bay, N., Skjoedt, M., & Silva, M. B. (2008). Theory of single point incremental forming. CIRP Annals, 57(1), 247-252. https://doi.org/10.1016/j.cirp.2008.03.047
  • 16. Mezher, M., Barrak, O., Nama, S., & Shakir, R. (2021). Predication of Forming Limit Diagram and Spring-back during SPIF process of AA1050 and DC04 Sheet Metals. Journal of Mechanical Engineering Research and Developments, 41, 337-345.
  • 17. Micari, F., Ambrogio, G., & Filice, L. (2007). Shape and dimensional accuracy in Single Point Incremental Forming: State of the art and future trends. Journal of Materials Processing Technology, 191(1-3), 390-395. https://doi.org/10.1016/j.jmatprotec.2007.03.066
  • 18. Mostafanezhad, H., Menghari, H. G., Esmaeili, S., & Shirkharkolaee, E. M. (2018). Optimization of two-point incremental forming process of AA1050 through response surface methodology. Measurement, 127, 21-28. https://doi.org/10.1016/j.measurement.2018.04.042
  • 19. Murugesan, M., Yu, J.-H., Jung, K.-S., Cho, S.-M., Bhandari, K. S., & Lee, C.-W. (2022). Optimization of Forming Parameters in Incremental Sheet Forming of AA3003-H18 Sheets Using Taguchi Method. Materials, 15(4), 1458. https://doi.org/10.3390/ma15041458
  • 20. Oleksik, V., Pascu, A., Bondrea, I., Avrigean, E., & Rosca, L. (2014). Comparative Study for Springback Prediction on Single Point Incremental Forming Process. Key Engineering Materials, 622-623, 375-381. https://doi.org/10.4028/www.scientific.net/KEM.622-623.375
  • 21. Orteu, J.-J., Bugarin, F., Harvent, J., Robert, L., & Velay, V. (2011). Multiple-Camera Instrumentation of a Single Point Incremental Forming Process Pilot for Shape and 3D Displacement Measurements: Methodology and Results. Experimental Mechanics, 51(4), 625-639. https://doi.org/10.1007/s11340-010-9436-1
  • 22. Rusu, G. P., Bârsan, A., Popp, M. O., & Maroșan, A. (2021). Comparison between aluminum alloys behavior in incremental sheet metal forming process of frustum pyramid shaped parts. IOP Conference Series: Materials Science and Engineering, 1009(1), 012054. https://doi.org/10.1088/1757-899X/1009/1/012054
  • 23. Shi, Y., Zhang, W., Cao, J., & Ehmann, K. F. (2019). Experimental study of water jet incremental micro-forming with supporting dies. Journal of Materials Processing Technology, 268, 117-131. https://doi.org/10.1016/j.jmatprotec.2019.01.012
  • 24. Su, C., Lv, S., Wang, R., Lv, Y., Lou, S., Wang, Q., & Guo, S. (2021). Effects of forming parameters on the forming limit of single-point incremental forming of sheet metal. The International Journal of Advanced Manufacturing Technology, 113(1-2), 483-501. https://doi.org/10.1007/s00170-020-06576-0
  • 25. Szpunar, M., Ostrowski, R., Trzepieciński, T., & Kaščák, Ľ. (2021). Central Composite Design Optimisation in Single Point Incremental Forming of Truncated Cones from Commercially Pure Titanium Grade 2 Sheet Metals. Materials, 14(13), 3634. https://doi.org/10.3390/ma14133634
  • 26. Wang, H., Zhang, R., Zhang, H., Hu, Q., & Chen, J. (2018). Novel strategies to reduce the springback for double-sided incremental forming. The International Journal of Advanced Manufacturing Technology, 96(1-4), 973-979. https://doi.org/10.1007/s00170-018-1659-9
  • 27. Wang, Y., Wang, L., Zhang, H., Gu, Y., & Ye, Y. (2022). A Novel Algorithm for Thickness Prediction in Incremental Sheet Metal Forming. Materials, 15(3), 1201. https://doi.org/10.3390/ma15031201
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2343c987-8e3c-4181-881c-f43b8f412901
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.