PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Critical cases in neutral functional differential equations, arising from hydraulic engineering

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper starts from several applications described by initial/boundary value problems for 1D (time and one space variable) hyperbolic partial differential equations whose basic properties and stability of equilibria are studied throughout the same properties for certain associated neutral functional differential equations. It is a common fact that asymptotic stability for neutral functional differential equations is normally obtained under the assumption of asymptotic stability of the difference operator associated to the aforementioned neutral functional differential equations. However the physically meaningful applications presented in the paper have the associated difference operator(s) in critical cases (their stability is, generally speaking, non-asymptotic). Consequently the stability of the considered application models is either non-asymptotic or fragile (in a sense introduced in the paper). The models represent an overview gathered from various fields, processed here in order to emphasize the associated neutral functional differential equations which, consequently, are a challenge to the usual approaches. In the concluding part there are suggested possible ways to overcome these difficulties.
Rocznik
Strony
605--633
Opis fizyczny
Bibliogr. 52 poz., rys.
Twórcy
  • University of Craiova, Department of Automatic Control and Electronics, 13 A. I. Cuza Street, Craiova, RO-200585 Romania
  • Romanian Academy of Engineering Sciences ASTR, 26 Dacia Blvd, Bucharest, RO-010413 Romania
Bibliografia
  • [1] V.E. Abolinia, A.D. Myshkis, Mixed problem for an almost linear hyperbolic system in the plane, Mat. Sb. 50 (1960), 423–442 [in Russian].
  • [2] G.V. Aronovich, N.A. Kartvelishvili, Ya.K. Lyubimtsev, Hydraulic Shock and Surge Tanks, Nauka, Moscow, USSR, 1968 [in Russian].
  • [3] E.A. Barbashin, Lyapunov Functions, Nauka, Moscow, USSR, 1970 [in Russian].
  • [4] R.E. Bellman, K.L. Cooke, Differential Difference Equations, no. 6, Mathematics in Science and Engineering, Academic Press, New York-London, 1963.
  • [5] M.H. Chaudhry, Applied Hydraulic Transients, Springer, New York–Heidelberg–Dordrecht–London, 2014.
  • [6] K.L. Cooke, A linear mixed problem with derivative boundary conditions, [in:] D. Sweet, J.A. Yorke (eds), Seminar on Differential Equations and Dynamical Systems (III), no. 51, Lecture Notes, University of Maryland, College Park, 1970, 11–17.
  • [7] K.L. Cooke, D.W. Krumme, Differential-difference equations and nonlinear initial-boundary value problems for linear hyperbolic partial differential equations, J. Math. Anal. Appl. 24 (1968), 372–387.
  • [8] M.A. Cruz, J.K. Hale, Stability of functional differential equations of neutral type, J. Differential Equations 7 (1970), 334–355.
  • [9] D. Danciu, V. Răsvan, Delays and propagation: Control Lyapunov functionals and computational issues, [in:] A. Seuret, H. Ozbay, C. Bonnet, H. Mounier (eds), Low-Complexity Controllers for Time-Delay Systems, no. 2, Advances in Delays and Dynamics, Springer, 2014, 141–154.
  • [10] D. Danciu, D. Popescu, V. Răsvan, Control of a time delay system arising from linearized conservation laws, IEEE Access 7 (2019), 48524–48542.
  • [11] D. Danciu, D. Popescu, V. Răsvan, Water hammer stability in a hydroelectric plant with surge tank and throttling, IFAC PapersOnLine 52 (2019), 144–149.
  • [12] D. Danciu, D. Popescu, V. Răsvan, Stability and control problems in hydropower plants, [in:] I. Petraš, J. Kačur (eds), 2020 21th International Carpathian Control Conference (ICCC), IEEE Conference Publications, 2020, 1–5.
  • [13] L.E. El’sgol’ts, Qualitative Methods in Mathematical Analysis, Gostekhizdat, Moscow USSR, 1955 [in Russian].
  • [14] L.E. El’sgol’ts, S.B. Norkin, Introduction to the Theory of Differential Equations with Deviated Argument, Nauka, Moscow USSR, 1971 [in Russian]; English version by Academic Press, N.Y., 1973.
  • [15] L. Escande, J. Dat, J. Piquemal, Stabilité d’une chambre d’équilibre placée à la junction de deux galeries alimentées par des lacs situés à la même cote, C.R. Acad. Sci. Paris 261 (1965), 2579–2581.
  • [16] S.K. Godunov, Équations de la physique mathématique, Éditions Mir, Moscow USSR, 1973.
  • [17] P.S. Gromova, Stability of solutions of nonlinear equations of neutral type in an asymptotically critical case, Matem. Zametki 1 (1967), 715–726 [in Russian]; English version in Math. Notes of the Acad. Sci. USSR 1 (1967), 472–479.
  • [18] P.S. Gromova, A.M. Zverkin, About the trigonometric series whose sum is a continuous unbounded on the real axis function – solution of an equation with deviated argument, Differ. Uravn. 4 (1968), 1774–1784 [in Russian].
  • [19] A. Halanay, M. Popescu, General operating hydraulic transient stability analysis for hydroelectric plants with one or two surge tanks via Lyapunov function, St. Cerc. Mec. Apl. 30 (1979), 3–19 [in Romanian].
  • [20] A. Halanay, M. Popescu, Une propriété arithmétique dans l’analyse du comportement d’un système hydraulique comprenant une chambre d’équilibre avec étranglement, C.R. Acad. Sci. Paris 305 (1987), 1227–1230.
  • [21] A. Halanay, V. Răsvan, Applications of Liapunov Methods in Stability, no. 245, Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht–Boston–London, 1993.
  • [22] J.K. Hale, Dynamical systems and stability, J. Math. Anal. Appl. 26 (1969), 39–59.
  • [23] J.K. Hale, K.R. Meyer, A Class of Functional Equations of Neutral Type, no. 76, Memoirs of Amer. Math. Soc., AMS, Providence, R.I., 1967.
  • [24] J.K. Hale, S. Verduyn Lunel, Introduction to Functional Differential Equations, no. 99, Applied Mathematical Sciences, Springer International Edition, 1993.
  • [25] C. Jaeger, Fluid Transients in Hydro-Electric Engineering Practice, Blackie, Glasgow & London, 1977.
  • [26] G.A. Kamenskii, On the general theory of the equations with deviated argument, Dokl. Akad. Nauk 120 (1958), 697–700 [in Russian].
  • [27] V.B. Kolmanovskii, A.D. Myshkis, Applied Theory of Functional Differential Equations, no. 85, Mathematics and Its Applications (Soviet Series), Springer Science+Business Media, 1992.
  • [28] V.B. Kolmanovskii, A.D. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, no. 463, Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht–Boston–London, 1999.
  • [29] V.B. Kolmanovskii, V.R. Nosov, Stability of Functional Differential Equations, no. 180, Mathematics in Science and Engineering, Academic Press, New York–London, 1986.
  • [30] J.P. LaSalle, S. Lefschetz, Stability by Liapunov’s direct method with applications, no. 4, Mathematics in Science and Engineering, Academic Press, New York–London, 1961.
  • [31] I.G. Malkin, Theory of Motion Stability, Nauka, Moscow USSR, 1966 [in Russian].
  • [32] A.D. Myshkis, A.S. Shlopak, Mixed problem for systems of differential-functional equations with partial derivatives and Volterra type operators, Mat. Sb. 41 (1957), 239–256 [in Russian].
  • [33] M. Popescu, Hydroelectric Plants and Pumping Stations, Editura Universitară, Bucharest, Romania, 2008 [in Romanian].
  • [34] M. Popescu, D. Arsenie, P. Vlase, Applied Hydraulic Transients: For Hydropower Plants and Pumping Stations, Taylor & Francis, Oxford, 2003.
  • [35] V. Răsvan, A method of distributed parameter control systems and electrical networks analysis, Rev. Roumaine Sci. Techn. Série Electrotechn. Energ. 20 (1975), 561–566.
  • [36] V. Răsvan, Stability of bilinear control systems occurring in combined heat electricity generation I: The mathematical models and their properties, Rev. Roumaine Sci. Techn. Série Electrotechn. Energ. 26 (1981), 455–465.
  • [37] V. Răsvan, Stability of bilinear control systems occurring in combined heat electricity generation II: Stabilization of the reduced models, Rev. Roumaine Sci. Techn. Série Electrotechn. Energ. 29 (1984), 423–432.
  • [38] V. Răsvan, Dynamical systems with lossless propagation and neutral functional differential equations, [in:] A. Beghi, L. Finesso, G. Picci (eds), Mathematical Theory of Networks and Systems MTNS 1998, Il Poligrafo, Padova Italy, 1998, 527–530.
  • [39] V. Răsvan, Systems with propagation: Problems and results, Periodica Politechnica “Politehnica” University of Timişoara Series Autom. Contr. Comp. Sci. 45 (2000), 5–10.
  • [40] V. Răsvan, Functional differential equations of lossless propagation and almost linear behavior, IFAC Proceedings Volumes 39 (2006), 138–150.
  • [41] V. Răsvan, Functional differential equations and one-dimensional distortionless propagation, Tatra Mt. Math. Publ. 43 (2009), 215–228.
  • [42] V. Răsvan, Functional differential equations associated to propagation, [in:] J.J. Loiseau, S.I. Niculescu, R. Sipahi (eds), Topics in Time Delay Systems. Analysis, Algorithms and Control, no. 388, Lect. Notes Control Inf. Sci., Springer Verlag, Berlin–Heidelberg–New York, 2009, 293–302.
  • [43] V. Răsvan, Delays. Propagation. Conservation laws, [in:] R. Sipahi, T.Vyhlidal, S.I. Niculescu, P. Pepe (eds), Time Delay Systems: Methods, Applications and New Trends, no. 423, Lect. Notes Control Inf. Sci., Springer Verlag, Berlin–Heidelberg–New York, 2012, 147–159.
  • [44] V. Răsvan, Augmented validation and a stabilization approach for systems with propagation, [in:] F. Miranda (ed.), Systems Theory: Perspectives, Applications and Developments, no. 1, Systems Science Series, Nova Science Publishers, New York, 2014, 125–170.
  • [45] V. Răsvan, Models and stabilization for mechanical systems with propagation and linear motion coordinates, [in:] E. Witrant, E. Fridman, O. Sename, L. Dugard (eds), Recent Results on Time-Delay Systems, no. 5, Advances in Delays and Dynamics, Springer, 2016, 149–167.
  • [46] V. Răsvan, Huygens synchronization over distributed media – structure versus complex behavior, [in:] E. Zattoni, A.M. Perdon, G. Conte (eds), Structural Methods in the Study of Complex Systems, no. 482, Lect. Notes Control Inf. Sci., Springer, 2020, 243–274.
  • [47] V. Răsvan, S.I. Niculescu, Oscillations in lossless propagation models – a Liapunov Krasovskii approach, IMA J. Math. Control Inform. 19 (2002), 157–172.
  • [48] N. Rouche, P. Habets, M. Laloy, Stability Theory by Liapunov’s Direct Method, Springer Verlag, New York–Heidelberg–Berlin, 1977.
  • [49] S.H. Saperstone, Semidynamical Systems in Infinite Dimensional Spaces, no. 37, Applied Mathematical Sciences, Springer, New York–Heidelberg–Berlin, 1981.
  • [50] N.G. Četaev, Stability of motion, Nauka, Moscow USSR, 1965 [in Russian].
  • [51] A.M. Zverkin, Series expansion of the solutions of linear differential difference equations I: quasi-polynomials, [in:] L.E. El’sgol’ts, A.M. Zverkin (eds), Papers of the seminar on the theory of differential equations with deviated argument, vol. 3, University of Peoples’ Friendship, Moscow USSR, 1965, 3–39 [in Russian].
  • [52] A.M. Zverkin, Series expansion of the solutions of linear differential difference equations II: series expansions, [in:] L.E. El’sgol’ts, A.M. Zverkin (eds), Papers of the seminar on the theory of differential equations with deviated argument, vol. 4, University of Peoples’ Friendship, Moscow USSR, 1967, 3–50.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-234343fb-30a4-4c44-b3cd-f13109bfb756
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.