PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-linear optimized spatial filter for single-trial identification of movement related cortical potential

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To investigate the optimal filter settings for pre-processing of Movement Related Cortical Potentials (MRCP) for the detection through EEG in single trial, we have proposed a novel Non-Linear Optimized Spatial Filter (NL-SF) and compared it to the Optimized Spatial Filtering (OSF) used in literature. MRCPs from EEG recordings are emphasized, calculating the optimal non-linear combination of channels which isolates the signal of interest. The method is applied to EEG data recorded from 16 healthy patients either executing or imagining 50 self-paced upper limb movements (palmar grasp). MRCPs have been identified from the outputs of the two filters by matching with a template built by averaging responses to movement intentions in the training set. NL-SF had a median accuracy on the overall dataset of 84.6%, which is significantly better than that of OSF (i.e., 76.9%). Being a filter and feasible for self-paced applications, it could be of interest in online BCI system design.
Twórcy
  • Mathematical Biology and Physiology, Dept. Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
  • Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
autor
  • Mathematical Biology and Physiology, Dept. Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
Bibliografia
  • [1] Shakeel A, Navid M, Anwar M, Mazhar S, Jochumsen M, Niazi I. A review of techniques for detection of movement intention using movement-related cortical potentials. Comput Math Methods Med 2015;2015. https://doi.org/ 10.1155/2015/346217 346217.
  • [2] Niazi I, Jiang N, Tiberghien O, Nielsen J, Dremstrup K, Farina D. Detection of movement intention from single-trial movement-related cortical potentials. J Neural Eng 2011;8(6) 066009.
  • [3] van Dokkum L, Ward T, Laffont I. Brain computer interfaces for neurorehabilitation – its current status as a rehabilitation strategy post-stroke. Ann Phys Rehab Med 2015;58(1):3–8. https://doi.org/10.1016/j.rehab.2014.09.016.
  • [4] Leuthardt E, Schalk G, Roland J, Rouse A, Moran D. Evolution of brain-computer interfaces: going beyond classic motor physiology. Neurosurg Focus 2009;27(1):E4. https://doi.org/10.3171/2009.4.FOCUS0979.
  • [5] Vidal J. Toward direct brain-computer communication. Annu Rev Biophys Bioeng 1973;2(1):157.
  • [6] Guger C, Spataro R, Allison B, Heilinger A, Ortner R, Cho W, La Bella V. Complete locked-in and locked-in patients: Command following assessment and communication with vibro-tactile p300 and motor imagery brain-computer interface tools. Front Neurosci 2017;11:251. https://doi.org/10.3389/fnins.2017.00251.
  • [7] Shahriari Y, Vaughan T, McCane L, Allison B, Wolpaw J, Krusienski D. An exploration of bci performance variations in people with amyotrophic lateral sclerosis using longitudinal eeg data. J Neural Eng 2019;16(5). https://doi.org/10.1088/1741-2552/ab22ea 056031.
  • [8] Alcaide-Aguirre R, Warschausky S, Brown A, Aref D, Huggins J. Asynchronous brain-computer interface for cognitive assessment in people with cerebral palsy. J Neural Eng 2017;14(6). https://doi.org/10.1088/1741-2552/aa7fc4 066001.
  • [9] Holz E, Botrel L, Kaufmann T, Kubler A. Long-term independent brain-computer interface home use improves quality of life of a patient in the locked-in state: a case study. Arch Phys Med Rehabil 2015;96(3 Suppl):S16–26. https://doi. org/10.1016/j.apmr.2014.03.035.
  • [10] Ramos-Murguialday A, Schurholz M, Caggiano V, Wildgruber M, Caria A, Hammer E, Halder S, Birbaumer N. Proprioceptive feedback and brain computer interface (bci) based neuroprostheses. PLoS One 2012;7(10). https://doi.org/ 10.1371/journal.pone.0047048 e47048.
  • [11] Grosse-Wentrup M, Mattia D, Oweiss K. Using brain-computer interfaces to induce neural plasticity and restore function. J Neural Eng 2011;8. https://doi.org/10.1088/1741- 2560/8/2/025004 025004.
  • [12] Heckman S, McFarland D, Townsend G, Mak J, Sellers E, Zeitlin D, Tenteromano L, Wolpaw J, Vaughan T, et al. P300- based brain-computer interface (bci) event-related potentials (erps): People with amyotrophic lateral sclerosis (als) vs. agematched controls. Clin Neurophysiol 2015;126(11):2124–31. https://doi.org/10.1016/j.clinph.2015.01.013.
  • [13] Ajami S, Mahnam A, Abootalebi V. Development of a practical high frequency brain-computer interface based on steadystate visual evoked potentials using a single channel of eeg. Biocybern Biomed Eng 2018;38(1):106–14. https://doi.org/ 10.1016/j.bbe.2017.10.004.
  • [14] Birch G, Bozorgzadeh Z, Mason S. Initial on-line evaluations of the lfasd brain-computer interface with able-bodied and spinal-cord subjects using imagined voluntary motor potentials. IEEE Trans Neural Sys Rehab Eng 2002;10 (4):219–24. https://doi.org/10.1109/TNSRE.2002.806839.
  • [15] Xu R, Jiang N, Vuckovic A, Hasan M, Mrachacz-Kersting N, Allan D, Fraser M, Nasseroleslami B, Conway B, Dremstrup K, Farina D. Movement-related cortical potentials in paraplegic patients: abnormal patterns and considerations for bci-rehabilitation. Front Neuroeng 2014;7:35. https://doi.org/ 10.3389/fneng.2014.00035.
  • [16] Schwarz A, Holler M, Pereira J, Ofner P, Muller-Putz G. Decoding hand movements from human eeg to control a robotic arm in a simulation environment. J Neural Eng 2020;17(3). https://doi.org/10.1088/1741-2552/ab882e 036010.
  • [17] Gu Y, Farina D, Ramos-Murguialday A, Dremstrup K, Birbaumer N. Comparison of movement related cortical potential in healthy people and amyotrophic lateral sclerosis patients. Front Neurosci 2013;7:65.
  • [18] Jiang N, Mrachacz-Kersting N, Xu R, Dremstrup K, Farina D. An accurate, versatile, and robust brain switch for neurorehabilitation, Guger, Christoph & Vaughan, Theresa & Allison, Brendan. (2013). Brain-Computer Interface Research: A State-of-the-Art Summary 2013;3:58. doi:10.1007/978-3-319-09979-8.
  • [19] Jeunet C, Jahanpour E, Lotte F. Why standard brain-computer interface (bci) training protocols should be changed: an experimental study. J. Neural Eng 2016;13(3). https://doi.org/ 10.1088/1741-2560/13/3/036024 036024.
  • [20] Dremstrup K, Niazi I, Jochumsen M, Jiang N, MrachaczKersting D, Farina N. Rehabilitation using a brain computer interface based on movement related cortical potentials. A review, XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013. Ed. by Laura M. Roa Romero. Cham: Springer International Publishing; 2014. pp. 1659–1662.
  • [21] Scherer R, Faller J, Sajda P, Vidaurre C. Eeg-based endogenous online co-adaptive brain-computer interfaces: Strategy for success? In: 10th Computer Science and Electronic Engineering (CEEC), Colchester, United Kingdom; 2018. pp. 299–304. doi:10.1109/CEEC.2018.8674198.
  • [22] Karimi F, Kofman J, Mrachacz-Kersting N, Farina D, Jiang N. Detection of movement related cortical potentials from eeg using constrained ica for brain-computer interface applications. Front Neurosci 2017;11:356. https://doi.org/ 10.3389/fnins.2017.00356.
  • [23] De Lathauwer L, Castaing J. Second-order blind identification of underdetermined mixtures. independent component analysis and blind signal separation, Ed. by Justinian Rosca, Deniz Erdogmus, José C. Príncipe, Simon Haykin. Berlin, Heidelberg: Springer, Berlin Heidelberg; 2006. pp. 40–47.
  • [24] Gomez-Herrero G, Clercq W, Anwar H, Kara K, Egiazarian O, Huffel S, Paesschen W. Automatic removal of ocular artifacts in the eeg without an eog reference channel. In: Proceedings of the 7th Nordic Signal Processing Symposium. p. 130–3.
  • [25] Sevcik C. A procedure to estimate the fractal dimension of waveforms. Complexity Int 5.
  • [26] Rao C, Mitra S. Generalized inverse of matrices and its applications. New York: John Wiley & Sons.
  • [27] Hofmann T, Scholkopf B, Smola A. Kernel methods in machine learning. Ann Stat 2008;36(3):1171–220. doi:10.1214 009053607000000677.
  • [28] Theodoridis S, Koutroumbas K. Pattern recognition. Academic Press.
  • [29] Rahimi A, Recht B. Random features for large-scale kernel machines, Advances in Neural Information Processing Systems 20. Ed. by J.C. Platt, Daphne Koller, Yoram Singer, Sam T. Roweis, Curran Associates, Inc.; 2008. pp. 1177–1184.
  • [30] Uttam Singh N, Das K, Roy A. How to test endogeneity or exogeneity: an e-learning hands on sas.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2342c7b1-aa01-46df-989a-c6e17cb259d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.