Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Textile composites can be manufactured utilizing both synthetic and natural fibers, such as Corypha gebanga fiber, being a viable option. The weaving of Corypha gebanga fiber with cotton thread in a plain weave configuration enables its application as a reinforcement material in textile composites involving a resin matrix. This research aims to investigate the mechanical characteristics of plain woven Corypha gebanga fiber textile fabric-reinforced polymer hybrid composites made from epoxy resin. This study utilized four different variations: a control group without any treatment, and three treatment groups using solutions with NaOH concentrations of 2.5%, 5%, and 7.5%. The result showed that NaOH concentrations above 2.5% seem to have a detrimental effect, as indicated by the gradual decrease in mechanical performance observed in the 5% and 7.5% NaOH-treated specimens. The decrease in tensile strength suggests that prolonged exposure to alkaline conditions leads to permanent alterations in the cellulose structure and morphology. The optimal concentration of NaOH for maximum mechanical performance enhancement is found to be 5%, which balances the removal of impurities and the avoidance of excessive fiber damage. Microscopy image analysis showed that fiber pullout occurred in all specimens tested that were cut in the direction of the warp during tensile testing. The onset of fracture was characterized by the resin breaking initially, followed by the fibers stretching and ultimately breaking.
Wydawca
Czasopismo
Rocznik
Tom
Strony
597--619
Opis fizyczny
Bibliogr. 40 poz., il., wykr.
Twórcy
- Mechanical Engineering Department, Udayana University, Badung, Indonesia
- Mechanical Engineering Department, Udayana University, Badung, Indonesia
autor
- Mechanical Engineering Department, Udayana University, Badung, Indonesia
autor
- Mechanical Engineering Department, Udayana University, Badung, Indonesia
- Mechanical Engineering Department, Udayana University, Badung, Indonesia
autor
- Mechanical Engineering Department, Bali State Polytechnic, Badung, Indonesia
Bibliografia
- [1] Ş.D. Albas, H. Ersoy, B. Akgöz, and Ö. Civalek. Dynamic analysis of a fiber-reinforced composite beam under a moving load by the Ritz method. Mathematics, 9(9):1048, 2021. doi: 10.3390/math9091048.
- [2] I.G.N.N. Santhiarsa, I.G.A.A. Praharsini, and I.G.A.A. Suryawati. Weight fraction effect of sugar palm fiber as polypropylene-elastomer matrix reinforcement on fire resistance of hybrid composite. International Journal on Advanced Science, Engineering and Information Technology, 12(2):649–654, 2022.
- [3] M.N. Ahmad, M.R. Ishak, M.M. Taha, F. Mustapha, Z. Leman, and Irianto. Mechanical, thermal and physical characteristics of oil palm (Elaeis Guineensis) fiber reinforced thermoplastic composites for FDM – type 3D printer. Polymer Testing, 120:107972, 2023. doi: 10.1016/j.polymertesting.2023.107972.
- [4] K. Rouf, X. Liu, and W. Yu. Multiscale structural analysis of textile composites using mechanics of structure genome. International Journal of Solids and Structures, 136-137:89–102, 2018. doi: 10.1016/j.ijsolstr.2017.12.005.
- [5] M.N. Ahmad, M.R. Ishak, M.M. Taha, F. Mustapha, and Z. Leman. Rheological properties of natural fiber reinforced thermoplastic composite for fused deposition modeling (FDM): A short review. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 98(2):157–164, 2022. doi: 10.37934/arfmts.98.2.157164.
- [6] Y. Gao, C. Xie, and Z. Zheng. Textile composite electrodes for flexible batteries and superca- pacitors: opportunities and challenges. Advanced Energy Materials, 11(3):2002838, 2021. doi: 10.1002/aenm.202002838.
- [7] F. Boussu, B. Provost, M. Lefebvre, and D. Coutellier. New textile composite solutions for armouring of vehicles. Advances in Materials Science and Engineering, 2019(3):7938720, 2019. doi: 10.1155/2019/7938720.
- [8] C.L. Park et al. Wet-spinning of reduced graphene oxide composite fiber by mechanical synergistic effect with graphene scrolling method. Materials Today Advances, 22:100491, 2024. doi: 10.1016/j.mtadv.2024.100491.
- [9] S. Wasti, A.M. Hubbard, C.M. Crarkson, E. Johnston, H. Tekinalp, S. Ozcan, and U. Vaidya. Long coir and glass fiber reinforced polypropylene hybrid composites prepared via wet-laid technique. Composites Part C: Open Access, 14:100445, 2024. doi: 10.1016/j.jcomc.2024.100445.
- [10] C.L. von Boyneburgk, J.C. Zarges, D. Kuhl, and H.P. Heim. Mechanical characterization and simulation of wood textile composites (WTC) supported by digital image correlation (DIC). Composites Part C: Open Access, 11:100370, 2023. doi: 10.1016/j.jcomc.2023.100370.
- [11] L. Mao, H. Yu, L. Yao, Y. Shen, X. Yan, and Y. Ma. Cut/puncture resistance and mechnisms of protective composite textiles reinforced with inorganic powder. Materials & Design, 237:112575, 2024. doi: 10.1016/j.matdes.2023.112575.
- [12] H. Li, Z.S. Khodaei, and M.H.F. Aliabadi. Multiscale modelling of material degradation and failure in plain woven composites: A novel approach for reliable predictions enabled by meta-models. Composites Science and Technology, 233:109910, 2023. doi: 10.1016/j.compscitech.2023.109910.
- [13] R. Healey, J. Wang, C. Wallbrink, W.K. Chiu, and Z. Xu. The application of cycle merging and an extension of a fatigue spectrum simplification methodology from unidirectional to woven composite materials. Composites Part C: Open Access, 8:100283, 2022. doi: 10.1016/j.jcomc.2022.100283.
- [14] B.I. Omer, Y.M. Ahmed, and R.M. Abdalrahman. Impact of textile types and their hybrids on the mechanical properties and thermal insulation of mohair-reinforced polyester composite laminates. Results in Materials, 21:100502, 2024. doi: 10.1016/j.rinma.2023.100502.
- [15] L.R. Völtz, L. Berglund, and K. Oksman. Resource-efficient manufacturing process of composite materials: fibrillation of recycled textiles and compounding with thermoplastic polymer. Composites Part A: Applied Science and Manufacturing, 175:107773, 2023. doi: 10.1016/j.compositesa.2023.107773.
- [16] H. Wang, D. Weerasinghe, P.J. Hazell, D. Mohotti, E.V. Morozov, and J.P. Escobedo-Diaz. Ballistic impact response of flexible and rigid UHMWPE textile composites: Experiments and simulations. Defence Technology, 22:37–53, 2023. doi: 10.1016/j.dt.2022.08.009.
- [17] G. Oematan, E. Hartati, M.L. Mulik, and N. Taratiba. Bio-fermentation improved the nutritional values of chromolena odorata utilization as bali cattle feed source. International Journal of Science and Research (IJSR), 9(8):1524–1533, 2020.
- [18] K.A. Ilman, A.S. Darmawan, M.A. Rofiq, Y.A. Prayoga, I. Nasucha, and R. Faizal. Brief dataset on chemical and mechanical properties of Corypha utan leaf fiber-reinforced composite with alkaline and silane treatment. Data in Brief, 40:107714, 2022. doi: 10.1016/j.dib.2021.107714.
- [19] B. Aaliya et al. Effect of low dose γ-irradiation on the structural and functional properties, and in vitro digestibility of ultrasonicated stem starch from Corypha umbraculifera L. Applied Food Research, 1(2):100013, 2021. doi: 10.1016/j.afres.2021.100013.
- [20] E. Widodo, Pratikto, Sugiarto, and T. D. Widodo. Comprehensive investigation of raw and NaOH alkalized sansevieria fiber for enhancing composite reinforcement. Case Studies in Chemical and Environmental Engineering, 9:100546, 2024. doi: 10.1016/j.cscee.2023.100546.
- [21] A. Kar and D. Saikia. Characterization of new natural cellulosic fiber from Calamus tenuis (Jati Bet) cane as a potential reinforcement for polymer composites. Heliyon, 9(6):e16491, 2023. doi: 10.1016/j.heliyon.2023.e16491.
- [22] S. Sharma, S.R. Asolekar, V.K. Thakur, and P. Asokan. Valorization of cellulosic fiber derived from waste biomass of constructed wetland as a potential reinforcement in polymeric composites: A technological approach to achieve circular economy. Journal of Environmental Management, 340:117850, 2023. doi: 10.1016/j.jenvman.2023.117850.
- [23] F. Khan, N. Hossain, F. Hasan, S.M.M. Rahman, S. Khan, A.Z.A. Saifullah, and M.A. Chowdhury. Advances of natural fiber composites in diverse engineering applications — A review. Applications in Engineering Science, 18:100184, 2024. doi: 10.1016/j.apples.2024.100184.
- [24] H. Majiya, F. Clegg, and C. Sammon. Bentonite-Chitosan composites or beads for lead (Pb) adsorption: Design, preparation, and characterisation. Applied Clay Science, 246:107180, 2023. doi: 10.1016/j.clay.2023.107180.
- [25] M. Königsberger, V. Senk, M. Lukacevic, M. Wimmer, and J. Füssl. Micromechanics stiff- ness upscaling of plant fiber-reinforced biocomposites. Composites Part B: Engineering, 281:111571, 2023. doi: 10.1016/j.compositesb.2024.111571.
- [26] A. Galotta, K. Rubenis, J. Locs, and V. M. Sglavo. Dissolution-precipitation synthesis and cold sintering of mussel shells-derived hydroxyapatite and hydroxyapatite/chitosan composites for bone tissue engineering. Open Ceramics, 15:100418, 2023. doi: 10.1016/j.oceram.2023.100418.
- [27] V.A. Yiga, M. Lubwama, and P.W. Olupot. Thermal stability of NaOH modified rice husk fiber-reinforced polylactic acid composites: Effect of rice husks and clay loading. Results in Materials, 18:100398, 2023. doi: 10.1016/j.rinma.2023.100398.
- [28] H. Rahman, F.Yeasmin, S.A. Khan, Md Z. Hasan, M. Roy, M.B. Uddin, and R.A. Khan. Fabrication and analysis of physico-mechanical characteristics of NaOH treated PALF reinforced LDPE composites: Effect of gamma irradiation. Journal of Materials Research and Technology, 11:914–928, 2021. doi: 10.1016/j.jmrt.2021.01.067.
- [29] H. Du, C. Xi, B. Tang, W. Chen, W. Deng, S. Cao, and G. Jiang. Performance and mechanisms of NaOH and ball-milling co-modified biochar for enhanced the removal of Cd2+ in synthetic water: A combined experimental and DFT study. Arabian Journal of Chemistry, 15(6):103817, 2022. doi: 10.1016/j.arabjc.2022.103817.
- [30] P. Lv, L. Zhu, Y. Yu, W. Wang, G. Liu, and H. Lu. Effect of NaOH concentration on antibacterial activities of Cu nanoparticles and the antibacterial mechanism. Materials Science and Engineering: C, 110:110669, 2020. doi: 10.1016/j.msec.2020.110669.
- [31] A. Hussain, D. Goljandin, V. Podgursky, M.M. Abbas, and I. Krasnou. Experimental mechanics analysis of recycled polypropylene-cotton composites for commercial applications. Advanced Industrial and Engineering Polymer Research, 6(3):226–238, 2023. doi: 10.1016/j.aiepr.2022.11.001.
- [32] I. Colamartino, E. Pinato, M. Cavasin, M. Tagliabue, M. Anghileri, and M. Boniardi. Static,dynamic and impact properties of a high-performance flax-fiber composite. Results in Materials, 20:100493, 2023. doi: 10.1016/j.rinma.2023.100493.
- [33] J.M. Alegre, I.I. Cuesta, and A. Díaz. Closed-form equations for the calculation of stress intensity factors for embedded cracks in round bars subjected to tensile load. Theoretical and Applied Fracture Mechanics, 121:103438, 2022. doi: 10.1016/j.tafmec.2022.103438.
- [34] M. Rahman, M.N. Islam, M.A. Ara, M.A. Habib, and M.M.H. Parvez. Mechanical properties of Kenaf and Palmyra Palm leaf stalk fiber reinforced composite. Results in Surfaces and Interfaces, 15:100229, 2024. doi: 10.1016/j.rsurfi.2024.100229.
- [35] V. Fasake and K. Dashora. Characterization and morphology of natural dung polymer for potential industrial application as bio-based fillers. Polymers, 12(12):3030, 2020. doi: 10.3390/polym12123030.
- [36] N. Santasup, P. Theanjumpol, C. Santasup, S. Kittiwachana, N. Mawan, L. Prantong, and N. Khongdee. Development of near-infrared spectroscopy (NIRS) for estimating organic matter, total carbon, and total nitrogen in agricultural soil. MethodsX, 13:102798, 2024. doi: 10.1016/j.mex.2024.102798.
- [37] N. Kroell et al. NIR-MFCO dataset: Near-infrared-based false-color images of post-consumer plastics at different material flow compositions and material flow presentations. Data in Brief, 48:109054, 2023. doi: 10.1016/j.dib.2023.109054.
- [38] I.G.N.N. Santhiarsa, I.G.A.A. Praharsini, I.G.A.A. Suryawati, and Pratikto. Analysis of mechanical strength of weight fraction variation sugar palm fiber as polypropyleneelastomer matrix reinforcement of hybrid composite. Eastern-European Journal of Enterprise Technologies, 5(12):20–29, 2021. doi: 10.15587/1729-4061.2021.238507.
- [39] J. Pheysey, F. De Cola, and F. Martinez-Hergueta. Short fibre/unidirectional hybrid thermoplastic composites: Experimental characterisation and digital analysis. Composites Part A: Applied Science and Manufacturing, 181:108121, 2024. doi: 10.1016/j.compositesa.2024.108121.
- [40] F. Liu, X. Zou, N. Yue, W. Zhang, and W. Zheng. Correlative Raman imaging and scanning electron microscopy for advanced functional materials characterization. Cell Reports Physical Science, 4(10):101607, 2023. doi: 10.1016/j.xcrp.2023.101607.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23422b48-8527-44a7-9caa-06ab65eea1e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.