str. 72

Ireneusz GRUBECKI

e-mail: ireneusz.grubecki@utp.edu.pl

Zakład Inżynierii Chemicznej i Bioprocesowej, Wydział Technologii i Inżynierii Chemicznej, Uniwersytet Technologiczno-Przyrodniczy, Bydgoszcz

Jak najefektywniej oczyszczać ścieki przemysłowe z nadtlenku wodoru?

Wstęp

Ponad 100 l świeżej wody zużywa się w przemyśle włókienniczym do przetwarzania 1kg tkanin, w szczególności do ich wybielania i przemywania. Po tych operacjach zachodzi konieczność usuwania resztek czynnika wybielającego (nadtlenku wodoru), by umożliwić ponowne wykorzystanie oczyszczonej wody i zmniejszyć w ten sposób zużycie świeżej. [*Fruhwirth i in., 2002*]. W tym celu preferowane jest zastosowanie katalazy, która nie tylko rozkłada H_2O_2 na tlen i wodę, lecz również znacząco obniża sumaryczne koszty przebiegu procesu [*Eberhardt i in., 2004*]. W praktyce przemysłowej proces rozkładu nadtlenku wodoru (RNW) prowadzony jest izotermicznie w temperaturze powyżej 60°C, chociaż optymalna aktywność katalazy osiągana jest w zakresie umiarkowanych temperatur [*Horst i in., 2006*].

Problem doboru optymalnych warunków temperaturowych w okresowym procesie rozkładu H_2O_2 jest zadaniem trudnym i szczegółowo analizowany był wcześniej [*Grubecki, 2010*]. Jednak rozwiązanie uzyskane w analizie optymalizacyjnej spełnia jedynie kryteria matematyczne, a nie uwzględnia racjonalnego aspektu eko-nomicznego, który nie powinien być pominięty w aplikacjach przemysłowych. Jest on niewątpliwie związany jest z czasem przebiegu procesu – im czas jest on krótszy, tym lepsze wskaźniki ekonomiczne są osiągane.

W niniejszej pracy przeprowadzono analizę, na podstawie której dokonano doboru optymalnych warunków temperaturowych, które minimalizują czas przebiegu procesu rozkładu nadtlenku wodoru przez natywną katalazę *Terminox Ultra* (KTU) z uwzględnieniem górnego i dolnego ograniczenia temperaturowego. Na jej podstawie porównano czasy przebiegu procesu prowadzonego w warunkach izotermicznych (WI) oraz przy optymalnym profilu temperatury (OPT) obliczając ich iloraz. Ten prosty wskaźnik (iloraz czasów trwania) może okazać się bardzo ważnym w praktyce przemysłowej, gdyż uzasadnia (lub nie) przebieg procesu przy optymalnym profilu temperatury.

Model matematyczny i jego rozwiązanie

Podstawowe równania modelowe

Rozpatrzono proces rozkładu H_2O_2 przez natywną KTU prowadzony w reaktorze okresowym z idealnym wymieszaniem przy stężenia substratu mniejszych od 0,02 kmol m⁻³. Przy takich założeniach model matematyczny procesu, po wprowadzeniu bezwymiarowych zmiennych stanu $\overline{C}_i = C_i/C_{i0}$ (*i*=E,S), przedstawia się następująco [*Grubecki*, 2010, 2016]:

$$-\frac{dC_{\rm S}}{dt} = k_{\rm R}' \overline{C}_{\rm E} \overline{C}_{\rm S} \qquad \overline{C}_{\rm S}(t=t_0) = 1, \qquad \overline{C}_{\rm S}(t=t_{\rm f}) = \overline{C}_{\rm Sf} \qquad (1a)$$

$$-\frac{d\overline{C}_{\rm E}}{dt} = k'_{\rm D}\overline{C}_{\rm E}\overline{C}_{\rm S} \quad \overline{C}_{\rm E}(t=t_0) = 1, \qquad \overline{C}_{\rm E}(t=t_{\rm f}) = \overline{C}_{\rm Ef} \quad (1b)$$

gdzie $\overline{C}_{\rm E}, \overline{C}_{\rm S}$ oznaczają odpowiednio aktywność enzymu (katalazy) oraz stężenie substratu (nadtlenku wodoru).

Wpływ temperatury na stałe szybkości reakcji $k_{\rm R}$ ($k'_{\rm R} = k_{\rm R}C_{\rm E0}$) i dezaktywacji $k_{\rm D}$ ($k'_{\rm D} = k_{\rm D}C_{\rm S0}$) opisuje równanie *Arrheniusa*.

Aby osiągnąć postawiony w pracy cel rozpatrzono proces prowadzony w warunkach izotermicznych oraz przy optymalnym sterowaniu temperaturą z uwzględnieniem dolnego T_{\min} i górnego T_{\max} ograniczenia temperaturowego.

Rozwiązanie modelu w warunkach izotermicznych

Analizując warunki izotermiczne problem polega na znalezieniu temperatury reakcji T_{isot} , zapewniającej osiągnięcie zadanych wartości końcowych stężenia substratu \overline{C}_{Sf} i aktywności enzymu \overline{C}_{Ef} ,

oraz czasu jej trwania $t_{f,isot}$.

$$T_{\rm isot} = \left\{ \frac{R}{(E_{\rm D} - E_{\rm R})} \ln \left[\frac{k_{\rm D0}}{k_{\rm R0}} \frac{C_{\rm S0}}{C_{\rm E0}} \frac{(1 - \overline{C}_{\rm Sf})}{(1 - \overline{C}_{\rm Ef})} \right] \right\}^{-1}$$
(2)

$$t_{\rm f,isot} = k_{\rm D0}^{-1} \left[\frac{k_{\rm D0} C_{\rm S0}^{1/E}}{k_{\rm R0} C_{\rm E0}} \left(\frac{1 - \overline{C}_{\rm Sf}}{1 - \overline{C}_{\rm Ef}} \right)^{1/E} \right]^{\overline{(E-1)}} \cdot \frac{(1 - \overline{C}_{\rm Ef})}{\overline{C}_{\rm Ef}}$$
(3a)

 $\overline{C}_{\rm Ef} = \overline{C}_{\rm Sf}$

$$t_{\rm f,isot} = k_{\rm D0}^{-1} \left[\frac{k_{\rm D0} C_{\rm S0}^{1/E}}{k_{\rm R0} C_{\rm E0}} \frac{(1 - \overline{C}_{\rm Sf})}{(1 - \overline{C}_{\rm Ef})^{1/E}} \right]^{\frac{E}{(E - 1)}} \cdot \frac{\ln(\overline{C}_{\rm Sf} / \overline{C}_{\rm Ef})}{(\overline{C}_{\rm Sf} - \overline{C}_{\rm Ef})}$$
(3b)

 $\overline{C}_{\rm Ef} \neq \overline{C}_{\rm Sf}$

W równ. (2) i (3) $E_{\rm D}$ i $E_{\rm R}$ oznaczają odpowiednio energię aktywacji dezaktywacji i reakcji.

Optymalne sterowanie temperaturą

Analizując optymalne warunki temperaturowe problem optymalizacyjny polegał na znalezieniu profilu temperatury $T_{opt}(t)$, który przy danych wartościach początkowych $\overline{C}_{s}(t=0)=1$ i $\overline{C}_{E}(t=0)=1$ oraz zadanych wartościach końcowych \overline{C}_{sf} i \overline{C}_{Ef} minimalizuje czas przebiegu procesu $t_{f,opt}$. W rozwiązaniu podjętego problemu optymalizacyjnego wykorzystano metodę rachunku wariacyjnego [*Grubecki*, 2016]. W rezultacie uzyskano równanie stacjonarnie optymalnego profilu temperatury (SOPT)

$$T_{\text{stat}}(t) = \left(\frac{R}{E_{\text{D}}} \ln \left\{ \left[E^2 \frac{k_{\text{D0}}}{k_{\text{R0}}} \frac{C_{\text{S0}}}{C_{\text{E0}}} \frac{(1 - \overline{C}_{\text{Sf}}^{1/E})}{(1 - \overline{C}_{\text{Ef}}^{E})} \right]^{\frac{E}{(E-1)}} \overline{C}_{\text{E}}^{E} \overline{C}_{\text{S}} \right\} \right)^{-1}$$
(4)

i czasu przebiegu procesu w analizowanych warunkach temperaturowych

$$F_{f,\text{stat}} = k_{\text{D0}}^{-1} \left\{ E^{(E+1)/E} \frac{k_{\text{D0}} C_{\text{S0}}^{1/E}}{k_{\text{R0}} C_{\text{E0}}} \frac{(1 - \overline{C}_{\text{Sf}}^{1/E})}{(1 - \overline{C}_{\text{Ef}}^{E})^{1/E}} \right\}^{\overline{(E-1)}}$$
(5)

gdzie $E = E_D / E_R$.

t

W praktyce przemysłowej reakcje enzymatyczne prowadzone są zazwyczaj przy uwzględnieniu ograniczeń temperaturowych. Stąd, w niniejszych rozważaniach do analizy wprowadzono dolne T_{min} i górne T_{max} ograniczenie temperaturowe. Punkty przełączenia części stacjonarnej profilu z dolnym i górnym odcinkiem izotermicznym zostały wyznaczone w sposób opisany we wcześniejszej pracy autora [*Grubecki, 2016*].

Analiza wyników

Matematyczna postać ocenianego wskaźnika

Aby sprawdzić, jak bardzo korzystny jest przebieg procesu przy optymalnym sterowaniu temperaturą $T_{\rm opt}(t)$ w porównaniu z procesem izotermicznym obliczono iloraz czasów trwania procesu w porównywanych warunkach. Wiadomo, że $t_{\rm f,isot} > t_{\rm f,opt}$, zatem oceniany wskaźnik $t_{\rm f,isot} / t_{\rm f,opt}$ przyjmuje postać

$$\frac{t_{\rm f,isot}}{t_{\rm f,opt}} = \frac{t_{\rm f,isot}}{t_{\rm f,b1} + t_{\rm f,stat} + t_{\rm f,b2}} \tag{6}$$

gdzie $t_{f,isot}$, $t_{f,stat}$, t_{b1} , t_{b2} oznaczają odpowiednio czasy procesu izotermicznego, stacjonarnej części procesu optymalnego oraz części izotermicznych procesu optymalnego przebiegających wzdłuż dolnego i górnego ograniczenia temperaturowego. Czasy te wyznacza się na podstawie rów. (3) i (5) stosując zasadę optymalności Bellmana [Bellman, 1957; Grubecki, 2016].

Z praktycznego punktu widzenia wskaźnik opisany zależnością (6) w prosty sposób uzasadnia (lub nie) zastosowanie optymalnego profilu temperatury w warunkach przemysłowych.

Graficzna interpretacja

Interpretację graficzną wskaźnika (6) obliczonego dla różnych T_{max} ilustruje rys. 1. Ze spadkiem \overline{C}_{Ef} wartość ilorazu $t_{\text{f,isol}}/t_{\text{f,opt}}$ wzrasta i jest znacznie większa w stacjonarnym procesie optymalnym (*j* = stat) (Rys.1, krzywa 1), aniżeli w procesie przebiegającym przy aktywnych ograniczeniach temperaturowych (*j* = opt) (krzywe 2-6).

Parametr	Jednostka	Wartość
C_{S0}	kmol·m ⁻³	0,005÷0,015
E _R	J·mol ⁻¹	11590
ED	J·mol ⁻¹	44822
$k_{\rm R0}C_{\rm E0}$	h ⁻¹	$1,11.10^{3}$
k _{D0}	m ³ ·kmol ⁻¹ ·h ⁻¹	8,09·10 ⁹

Tab. 1. Parametry użyte w obliczeniach

Odchylenie między wartościami $t_{f,isot}/t_{f,ott}$ i $t_{f,isot}/t_{f,opt}$ zależy od różnicy pomiędzy $T_{max} - T_{min}$. Im większa jest wspomniana różnica tym większe korzyści - w porównaniu z warunkami izotermicznymi – uzyskuje się stosując optymalne sterowanie temperaturą w praktyce przemysłowej. Nie zawsze jednak wartość ilorazu $t_{f,isot}/t_{f,opt}$ wzrasta, gdy $\overline{C}_{\rm Ef}$ maleje. Można zauważyć, że dla pewnych wartości $\overline{C}_{\rm Ef}$ temperatura procesu izotermicznego może zmierzać do wartości $T_{\rm max}$. Wówczas optymalny profil temperatury składa się z części stacjonarnej ($T_{\rm stat}(t)$) oraz w przeważającej części, lub nawet w całości, z odcinka izotermicznego na poziomie $T = T_{\rm max}$. W konsekwencji, ze spadkiem $\overline{C}_{\rm Ef}$ wartość ilorazu $t_{f,isot}/t_{f,opt}$ zmierza do jedności (Rys. 1, krzywa 5 i 6). Zatem, w takiej sytuacji OPT jest polityką izotermiczną na poziomie $T_{\rm max}$.

Rys. 1. Graficzna interpretacja ilorazu $t_{f,isot}/t_{f,opt}$ jako funkcji T_{max} i \overline{C}_{Ef} dla $C_{S0} = 0.01$ kmol m⁻³, $T_{min} = 293$ K oraz $\overline{C}_{Sf} = 0.05$

Przykładowe przebiegi optymalnych profili temperatury

Na rys. 2 i 3 zilustrowano optymalne profile temperatury oraz warunki izotermiczne w rozważanym procesie.

Dla przypadku przedstawionego na rys. 2 wartość wskaźnika $t_{f,isol}/t_{f,stat}$ obliczonego dla procesu prowadzonego przy SOPT wynosi odpowiednio 1.519 dla $\overline{C}_{Ef} = 0.4$ oraz 3.108 dla $\overline{C}_{Ef} = 0.1$. Z kolei w procesie przebiegającym przy OPT wartość ilorazu $t_{f,isol}/t_{f,opt}$ są równe odpowiednio 1.282 i 1.380 dla $T_{max} = 323$ K oraz 1.192 i 1.065 dla $T_{max} = 313$ K. Dodatkowo, spadek stężenia H₂O₂ powoduje skrócenie części izotermicznej profilu optymalnego przebiegającej na poziomie T_{min} oraz części stacjonarnej, co świadczy o przebiegu procesu w zakresie wyższych temperatur (Rys. 3). W konsekwencji, wartość ocenianego ilorazu $t_{f,isol}/t_{f,opt}$ zmierza do jedności (lub ją osiąga). Oznacza to, że temperatura procesu izotermicznego T_{isot}

oraz optymalna polityka temperaturowa odpowiadają maksymalnej temperaturze dopuszczalnej $T_{\rm max}$.

Rys. 2. Optymalne sterowanie temperaturą z dolnym ($T_{min} = 293$ K) i górnym ($T_{max} = 323$ K i 313K) ograniczeniem temperaturowym oraz warunki izotermiczne w procesie RNW przez KTU dla $\overline{C}_{Sf} = 0.05$ oraz $\overline{C}_{Ef} = 0.4$ (1. ciągła) $\overline{C}_{Ef} = 0.1$ (1. przerywana)

Rys. 3. Optymalne sterowanie temperaturą z dolnym ($T_{\min} = 293$ K) i górnym ($T_{\max} = 323$ K) ograniczeniem temperaturowym (l. ciągła) oraz warunki izotermiczne (l. przerywana) dla różnych stężeń początkowych H₂O₂ oraz $\overline{C}_{Sf} = 0.05$ oraz $\overline{C}_{Ef} = 0.1$

Wnioski

Z przeprowadzonej analizy wynika, że przy ustalonych warunkach operacyjnych istnieje określona wartość $\overline{C}_{\rm Ef}$, która zapewnia największą redukcję czasu przebiegu procesu wynikającą z zastosowania OPT zamiast WI. W sytuacji przedstawionej na rys. 1, wspomniane wartości aktywności wynoszą 0,05 dla $T_{\rm max}$ = 333K, 328K i 323K, oraz 0,3 dla $T_{\rm max}$ = 318K i 0,4 dla $T_{\rm max}$ = 313K. Im większa jest różnica $T_{\rm max} - T_{\rm min}$, tym bardziej uzasadnione jest zastosowania optymalnego sterowania temperaturą w procesie rozkładu nadtlenku wodoru.

LITERATURA

Bellman R., (1957). Dynamic Programming. Princeton Uni. Press, New Jersey

- Eberhardt A. M., Pedroni V., Volpe M., Ferreira M. L., (2004). Immobilization of catalase from Aspergillus niger on inorganic and biopolymeric supports for H₂O₂ decomposition. *Appl. Catal. B-Environ.*, 47(3), 153-163. DOI: 10.1016/j.apcatb.2003.08.007
- Fruhwirth G. O., Paar A., Gudelj M., Cavaco-Paulo A., Robra K. H., Gubitz G. M., (2002). An immobilized catalase peroxidase from the alkalothermophilic Bacillus SF for the treatment of textile-bleaching effluents. *Microb. Appl. Biotechnol.*, 60(0), 313-319. DOI: 10.1007/s00253-002-1127-0
- Grubecki I., (2010). Optimal temperature control in a batch bioreactor with parallel deactivation of enzyme. J Process Control, 20(5), 573-584. DOI: 10.1016/j.jprocont.2010.02.009
- Grubecki I., (2016). How to run biotransformations At the optimal temperature control or isothermally? Mathematical assessment. J. Proc. Control, 44(0), 79-91. DOI: 10.1016/j.jprocont.2016.05.005
- Horst F., Rueda E. H., Ferreira M. L., (2006). Activity of magnetite-immobilized catalase in hydrogen peroxide decomposition. *Enzyme Microb. Technol.*, 38(7), 1005-1012. DOI: 10.1016/j.enzmictec.2005.08.035