Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study addresses the issues of abundant cold energy in fuel and the high energy consumption of CO2 liquefaction capture by the shipboard carbon capture system in LNG-fuelled vessels. Two liquefied CO2 schemes are proposed: an LNG cold energy and refrigeration cycle integrated CO2 liquefaction system (Scheme 1) and an LNG cold energy and seawater diversion liquefied CO2 system (Scheme 2). The two systems are simulated in Aspen HYSYS software and, based on the simulation data, multiple thermodynamic parameters of the system, including exergy efficiency, cold energy utilisation rate, and energy consumption, are calculated under different vessel operating conditions, thereby verifying the feasibility of the system. On this basis, the systems are optimised, enhancing their overall performance. Through a comparative analysis of the two schemes, Scheme 1 was selected to conduct an economic analysis of typical vessel routes and calculations were conducted to determine the reduction in energy consumption and the decrease in carbon emissions achieved by utilising LNG cold energy for CO2 liquefaction and capture. The results prove that the system should have good practical applications.
Czasopismo
Rocznik
Tom
Strony
131--146
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong, China
autor
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong, China
autor
- CHINA Shipbuilding Industry Corporation Diesel Engine CO., LTD, Qingdao 266400, Shandong, China
autor
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong, China
autor
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong, China
autor
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong, China
autor
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, Liaoning, China
Bibliografia
- 1. Rudzki K, Dzida M, Pham ND, Pham MT, Nguyen PQ, Xuan PN. Understanding Fuel Saving and Clean Fuel Strategies Towards Green Maritime. Polish Maritime Research, vol. 30, no. 2, 2023, pp. 146-164. https://doi.org/10.2478/pomr-2023-0030.
- 2. Al-Enazi A, Okonkwo E C, Bicer Y. A review of cleaner alternative fuels for maritime transportation [J]. Energy Reports, 7, 2021, pp. 1962-1985. https://doi.org/10.1016/j.egyr.2021. 03.036.
- 3. Zincir B. A short review of ammonia as an alternative marine fuel for decarbonised maritime transportation [J]. Proceedings of the ICEESEN2020, Kayseri, Turkey, 2020, pp. 19-21.
- 4. Lu X, Yang K, Yuan D. Ventilation Design of Gas System for LNG Dual Fuel Container Ship [J]. Ship Engineering, 46(S1), 2024, pp. 340-345.
- 5. Balcombe P, Staffell I, Kerdan IG, Speirs JF, Brandon NP, Hawkes AD. How can LNG-fueled ships meet decarbonisation targets? An environmental and economic analysis [J]. Energy, 227, 2021, 120462. https://doi.org/10.1016/j.energy.2021.120462.
- 6. Ammar NR, Almas M, Nahas Q. Economic Analysis and the EEXI Reduction Potential of Parallel Hybrid Dual-Fuel Engine‒Fuel Cell Propulsion Systems for LNG Carriers. Polish Maritime Research, vol. 30, no. 3, Sciendo, 2023, pp. 59-70.
- 7. Ros JA, Skylogianni E, Doedee V, van den Akker JT, Vredeveldt AW, Linders MJ, Goetheer EL, Monteiro JG. Advancements in ship-based carbon capture technology on board LNG-fuelled ships [J]. International Journal of Greenhouse Gas Control, 114, 2022, 103575. https://doi.org/10.1016/j.ijggc.2021.103575.
- 8. Mukherjee A, Bruijnincx P, Junginger M. A perspective on biofuels use and CCS for GHG mitigation in the marine sector [J]. Iscience, 23(11), 2020, 101758. https://doi.org/10.1016/ j.isci.2020.101758.
- 9. Badami M, Bruno JC, Coronas A, Fambri G. Analysis of different combined cycles and working fluids for LNG exergy recovery during regasification. Energy, 159, 2018, pp. 373-384. https://doi.org/10.1016/j.energy.2018.06.100.
- 10. Ros JA, Skylogianni E, Doedee V, van den Akker JT, Vredeveldt AW, Linders MJ, Goetheer EL, Monteiro JG. Potential of liquefied natural gas cold energy recovery on board ships [J]. Journal of cleaner production, 271, 2020, 122519. https://doi.org/10.1016/j.jclepro.2020. 122519.
- 11. He T, Chong ZR, Zheng J, Ju Y, Linga P. LNG cold Energy utilisation: Prospects and challenges [J]. Energy, 170, 2019, pp. 557-568. https://doi.org/10.1016/j.energy.2018.12.170.
- 12. Li B, Li Y, Lin Y, Cui Y, Yang H. Research on the utilisation of fuel cold energy for LNG powered container ships [J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 237(2), 2023, pp. 385-405.
- 13. Li Y, Li B, Deng F, Yang Q, Zhang B. Research on the Application of Cold Energy of Largescale LNG-Powered Container Ships to Refrigerated Containers. Polish Maritime Research, vol. 28, no. 4, Sciendo, 2021, pp. 107-121. https://doi.org/10.2478/pomr-2021-0053.
- 14. Yao S, Yang Y, Zhang Z, Wei Y, Sun J. Design and optimisation of LNG-powered ship cold energy and waste heat integrated utilisation system based on novel intermediate fluid vaporiser [J]. Case Studies in Thermal Engineering, 40, 2022, 102528. https://doi.org/10.1016/j.csite. 2022.102528.
- 15. Liu M, Wu D. Evaluation of LNG cryogenic Energy utilisation in seawater desalination on LNG-fueled ships. In: RINA, Royal Institution of Naval Architects - International Conference on LNG/LPG and Alternative Fuel Ships 2020. London, United Kingdom; 2020, pp. 43-48.
- 16. Shouguang Y, Li C, Wei Y. Design and optimisation of a zero carbon emission system integrated with the utilisation of marine engine waste heat and LNG cold energy for LNG-powered ships. Applied Thermal Engineering, 231, 2023, 120976. https://doi.org/10.1016/j.applthermaleng.2023.120976.
- 17. He T, Lv H, Shao Z, Zhang J, Xing X, Ma H. Cascade utilisation of LNG cold energy by integrating cryogenic energy storage, organic Rankine cycle and direct cooling [J]. Applied Energy, 277, 2020, 115570. https://doi.org/10.1016/j.apenergy.2020.115570.
- 18. Karlsson S. Method and arrangement for waste cold recovery in a gas-fueled sea-going vessel: U.S. Patent 10,168,001[P]. 2019-1-1.
- 19. Xiang T, Wang Z, Wang G, Li L. Research on multifunctional integrated system for cold energy cascade utilisation of liquefied natural gas [J]. CIESC Journal, 75(10) 2024, pp.3401-3413.
- 20. Mazzoni S, Rajoo S, Romagnoli A. A boil-off gas utilisation for improved performance of heavy duty gas turbines in combined cycle [J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 233(1), 2019, pp. 96-110.
- 21. Ouyang T, Tan J, Xie S, Wu W, Su Z. A new scheme for large marine vessels LNG cold energy utilisation from thermodynamic and thermoeconomic viewpoints [J]. Energy Conversion and Management, 229, 2021, 113770. https://doi.org/10.1016/j.enconman.2020.113770.
- 22. Tradal S, Stang JH, Snustad I, Johansson MV, Berstad D. CO2 Liquefaction Close to the Triple Point Pressure [J]. Energies, 14(24) 2021, 8220.
- 23. Lu J, Li Y, Li B, Yang Q, Deng F. Research on re-liquefaction of cargo BOG using liquid ammonia cold energy on CO2 transport ship [J]. International Journal of Greenhouse Gas Control, 129, 2023, 103994. https://doi.org/10.1016/j.ijggc.2023.103994.
- 24. Wang K, Yan X, Yuan Y, Jiang X, Lin X, Negenborn RR. Dynamic optimisation of ship energy efficiency considering time-varying environmental factors [J]. Transportation Research Part D: Transport and Environment, 62, 2018, pp. 685-698. https://doi.org/10.1016/j.trd.2018.04.005.
- 25. Zamboni G, Scamardella F, Gualeni P, Canepa E. Comparative analysis among different alternative fuels for ship propulsion in a well-to-wake perspective [J]. Heliyon, 10(4), 2024.
- 26. Thiaucourt J. Methods and models for the concept design of liquefied natural gas fuel systems on ships [D]. Ecole centrale de Nantes; 2019.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-233807ca-56f6-4d61-8aba-b2a61edb0604
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.