Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Metallurgy, as one of the oldest industries, is currently experiencing a technological boom in an effort to increase production efficiency with the least possible impact on the environment. Modeling methods make it possible to design and simulate a technological process or technological equipment for conditions that take into account the above-mentioned aspects. For this reason, the article focuses on the use of simulation modeling using accessible computer technologies in order to improve the operation of heating aggregates with the metal-bearing batch, such as a continuous heating furnace. The paper describes the methodology for modeling the flow of flue gases in the working space of a gas heating furnace, which results in their enthalpy representation. A simulation study was performed for a gas-fired furnace used to heat gates. Three case studies were simulated with set values of on and off burners and fuel flow to them. The effect of these parameters on the total amount of recirculated flue gas was investigated. The results showed that the fuel flow regulation to the burners at the material inlet into the furnace had a higher effect on the overall recirculation than the switching on and off the burners on the furnace's outlet side. The results pointed to critical points on the inner shell of the furnace, which could be the most critically thermally stressed, for example, in the places of the collision of opposing flue gas flows.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
1--12
Opis fizyczny
Bibliogr. 25 poz., fig., tab.
Twórcy
autor
- Technical University of Košice, Faculty FMMR, Institute of Metalurgy, Letná 9, 042 00 Košice, Slovak Republic
autor
- Technical University of Košice, Faculty BERG, Institute of Control and Informatization of Production Processes, Němcovej 3, 042 00 Košice, Slovak Republic
autor
- Technical University of Košice, Faculty BERG, Institute of Control and Informatization of Production Processes, Němcovej 3, 042 00 Košice, Slovak Republic
autor
- Technical University of Košice, Faculty BERG, Institute of Control and Informatization of Production Processes, Němcovej 3, 042 00 Košice, Slovak Republic
autor
- Technical University of Košice, Faculty BERG, Institute of Control and Informatization of Production Processes, Němcovej 3, 042 00 Košice, Slovak Republic
Bibliografia
- 1. Hassan, A. A., Hamed, M.S. Modeling of Heat Treatment of Randomly Distributed Loads in Multi-Zone Continuous Furnaces. Materials Science Forum, 706-709, 2012, 289-294, 10.4028/ www.scientific.net/MSF.706-709.289.
- 2. Honner, M., Vesely, Z., Svantner, M. Temperature and heat transfer measurement in continuous reheating furnaces. Scandinavian Journal of Metallurgy, 32 (5), 2003, 225-232, 10.1034/j.16000692.2003.00645.x.
- 3. Kang, J.W., Huang, T.Y., Purushothaman, R., Wang, W.W., Rong, Y.M. Modeling and simulation of heat transfer in loaded continuous heat treatment furnace. 14th Congress of International Federation for heat Treatment and Surface Engineering, Vols 1 and 2, Proceedings, 2004, 764-768.
- 4. Rad, S.D., Ashrafizadeh, A., Nickaeen, M. Numerical simulation of fluid flow and heat transfer in an industrial continuous furnace. Applied Thermal Engineering, 2017, 2017, 263-274, 10.1016/j.applthermaleng.2017.02.031.
- 5. Fuyong S., Heating and Flow Analysis in HotRolled Stainless Strip Continuous Annealing Furnace Based on CFD Modeling, Heat Transfer—Asian Research, 46 (7), 2017, 924-932, 10.1002/htj.21251.
- 6. Zhou, G., Wen, Z., Dou, R. F., Su, F.Y., Fang, X., Zhuang, W.Q., Cao, Y. The Steady-state Model of Heating Process in Horizontal Continuous Annealing Furnace. Fundamental of Chemical Engineering, 233-235, 2011, 2428-2431, 10.4028/www.scientific.net/AMR.233-235.2428.
- 7. Sahay, S. S., Kapur, P.C. Model based scheduling of a continuous annealing furnace. Ironmaking & Steelmaking, 34 (3), 2007, 262-268, 10.1179/174328107X165708.
- 8. Zhang, C., Qin, J., Yang, Q., Zhang, S., Chang, J., Bao, W. Indirect measurement method of inner wall temperature of scramjet with a state observer. Acta Astronautica, 115, 2015, 330-337, 10.1016/j.actaastro.2015.05.030.
- 9. Sahay, S. S., Krishnan, K. Model based optimization of continuous annealing operation for bundle of packed rods. Ironmaking & Steelmaking, 34 (1), 2007, 89-94, 10.1179/174328106X118170.
- 10. Steinboeck, A., Wild, D., Kugi, A. Feedback Tracking Control of Continuous Reheating Furnaces. Proceedings of the 18th World Congress the International Federation of Automatic Control, 44 (1), 2011, 11744-11749, 10.3182/20110828-6-IT-1002.01639.
- 11. Wild, D., Meurer, T., Kugi, A. Modelling and experimental model validation for a pusher-type reheating furnace. Mathematical and Computer Modelling of Dynamical Systems, 15 (3), 2009, 209–232, 10.1080/13873950902927683.
- 12. Hajaliakbari, N., Hassanpour, S. Analysis of thermal energy performance in continuous annealing furnace. Applied Energy, 206, 2017, 829–842, 10.1016/j.apenergy.2017.08.246.
- 13. Goyheneche, J. M., Sacadura, J. F. The Zone Method: A New Explicit Matrix Relation to Calculate the Total Exchange Areas in Anisotropically Scattering Medium Bounded by Anisotropically Reflecting Walls. Journal of Heat Transfer, Transactions of the ASME, 124, 2002, 696-703, 10.1115/1.1481359.
- 14. Hu, W., Jia, P., Nie, J., Gao, Y. and Zhang, Q. A Fast Prediction Model for Heat Transfer of HotWall Heat Exchanger Based on Analytical Solution. Applied Science, 9 (72), 2019, 1-18, 10.3390/ app9010072.
- 15. Hu, G., Zhang, Y., Du, W., Long, J., Qian, F. Zone method based coupled simulation of industrial steam cracking Furnaces. Energy, 172, 2019, 10981116, 10.1016/j.energy.2018.12.190.
- 16. Xiang, L., Song, E., Ding, Y. A Two-Zone Combustion Model for Knocking Prediction of Marine Natural Gas SI Engines. Energies, 11 (3), 2018, 1-23, 10.3390/en11030561.
- 17. Kreuzer, D. R., Werner, A. Implementation of Models for reheating processes in industrial furnaces, Proceedings 8th Modelica Conference, 2011, 376-387.
- 18. Kaprielian, L., Demoulin, M., Cinnella, P., Daru V. Multi-Zone Quasi-Dimensional Combustion Models for Spark-Ignition Engines. Conference: 11th International Conference on Engines & Vehicles, Volume: SAE Technical Paper Series 2013-240025, 2013, 10.4271/2013-24-0025.
- 19. Li, R. C., Zhu, G. G. A Control-Oriented ReactionBased SI Engine Combustion Model. Proceedings of the ASME 2018 Dynamic Systems and Control Conference, 2018, DSCC2018-8988, 1-8, 10.1115/ DSCC2018-8988.
- 20. Oba, R., Possamai, T.S., Nunes, A.T., Nicolau, V.P. Numerical simulation of tunnel kilns applied to white tile with natural gas. Proceedings of COBEM 2011 21st Brazilian Congress of Mechanical Engineering, 2011.
- 21. Shiehnejadhesar, A., Mehrabian, R., Scharler, R., Goldin, G. M., Obernberger, I. Development of a gas phase combustion model suitable for low and high turbulence conditions, Fuel, 126 (15), 2014, 177-187, 10.1016/j.fuel.2014.02.040.
- 22. Zhang, C., Usmani, A. Heat transfer principles in the thermal calculation of structures in fire, Fire Safety Journal, 78, 2015, 85–95, 10.1016/j.firesaf.2015.08.006.
- 23. Lukáč, L., Kizek, J., Jablonský, G., Karakash, Y. Defining the Mathematical Dependencies of NOx and CO Emission Generation after Biomass Combustion in Low-Power Boiler, Civil and Environmental Engineering Reports, 29 (3), 2019, 153163, 10.2478/ceer-2019-0031.
- 24. Drábikova, E., Škrabuľákova, E. F. Reducing costs by graph algorithms. 19th International Carpathian Control Conference, 2018, 113 – 117, 10.1109/carpathiancc.2018.8399612.
- 25. Škrabuľáková, E. F., Grešová, E. Cost Saving via Graph Coloring Approach. Scientific Papers of the University of Pardubice: Series D, 27 (45), 2019, 152-160, ISSN 1211-555X.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23335a77-5400-4122-acbd-1323d944b406