PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Carbon and nutrient removal from domestic wastewaters in a modified 5-stage Bardenpho process via fuzzy modeling approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gradual increase in the generation of wastewater results from the increasing global population. Thus, new treatment techniques and systems for controlling the treatment process depending on wastewater characteristics are desirable. This paper presents the use of a pilot-scale modified five-stage Bardenpho process with a 10 m3/day capacity for the treatment of real municipal wastewater. The process was developed for this study, and the steady-state removal efficiencies for COD (chemical oxygen demand), TKN (total Kjeldahl nitrogen), NH4+-N (ammonium nitrogen), PO43--P (phosphate phosphoms), SS (suspended solids), and VSS (volatile suspended solids) were 87±5%, 86±12%, 93±14%, 89±9%, 88±8%, 94±4%, and 94±4%, respectively. In the study, the effluent COD, TKN, and TP concentrations were also estimated using a fuzzy logic approach. The results showed that coefficients of determination are higher than 0.80 suggesting that the presented fuzzy logic approach may confidently be used for the estimation of the treatment performance.
Rocznik
Strony
5--16
Opis fizyczny
Bibliogr. 25 poz., tab., rys.
Twórcy
  • Yildiz Technical University, Faculty of Civil Engineering, Environmental Engineering Department, 34220, Esenler, Istanbul, Turkey
  • Yildiz Technical University, Faculty of Civil Engineering, Environmental Engineering Department, 34220, Esenler, Istanbul, Turkey
autor
  • Yildiz Technical University, Faculty of Civil Engineering, Environmental Engineering Department, 34220, Esenler, Istanbul, Turkey
  • Yildiz Technical University, Faculty of Civil Engineering, Environmental Engineering Department, 34220, Esenler, Istanbul, Turkey
autor
  • Yildiz Technical University, Faculty of Civil Engineering, Environmental Engineering Department, 34220, Esenler, Istanbul, Turkey
Bibliografia
  • [1] WANG Q., CHEN Q., Simultaneous denitrification and denitrifying phosphorus removal in a full-scale anoxic oxic process without internal recycle treating low strength wastewater, J. Environ. Sci., 2016, 39, 175.
  • [2] Government of Western Australia Department of Water, Wastewater treatment and disposal – domestic systems, Water quality protection note No. 70, March 2016, On line at: https://www.water.wa.gov.au/data/assets/pdf_file/0003/4845/93698.pdf
  • [3] LIN Z., LIU S., Simulation of closed double-sludge retention time anoxic-oxic process in wastewater treatment. Case study for a utility model process, Water Environ. J., 2011, 25 (4), 573.
  • [4] ONTIVEROS G.A., CAMPANELLA E.A., Environmental performance of biological nutrient removal processes from a life cycle perspective, Biores. Technol., 2013, 150, 506.
  • [5] NGUYEN N.C., CHEN S.-S., NGUYEN H.T., RAY S.S., NGO H.H., GUO W., LIN P.-H., Innovative sponge-based moving bed-osmotic membrane bioreactor hybrid system using a new class of draw solution for municipal wastewater treatment, Water Res., 2016, 91, 305.
  • [6] LI Y., LUO X., HUANG X., WANG D., ZHANG W., Life Cycle Assessment of a municipal wastewater treatment plant: a case study in Suzhou, China, J. Clean. Prod., 2013, 57, 221.
  • [7] MANAV DEMIR N., Investigation of Nutrient Removal and Associated Microorganisms in Advanced Treatment Processes, Ph.D. diss. Yildiz Technical University, Turkey, 2012 (in Turkish).
  • [8] Turkish Standards Institution, Municipal Wastewater Statistics 2014, No. 18778, 2015, on line at: http://www.tuik.gov.tr/PreHaberBultenleri.do?id=18778#
  • [9] Turkish Ministry of Environment and Forestry, Action Plan for Wastewater Treatment 2008–2012, 2014, on line at: http://www.cygm.gov.tr/CYGM/Files/EylemPlan/aateylemplani.pdf
  • [10] Turkish former Ministry of Environment and Forests, EU Integrated Adaptation Strategy for Environment 2007–2023, 2006, on line at: http://www.abgs.gov.tr/files/SEPB/cevrefas lidokumanlar/uces.pdf
  • [11] Turkish Ministry of Environment and Urbanization, Action Plan for Wastewater Treatment 2014–2023, 2014, on line at: https://csb.gov.tr/db/cygm/editordosya/AAEP.pdf
  • [12] MALKOÇ A.A., Comparison of European Union and Turkish Discharge Standards for Urban Wastewater Treatment, M.Sc. Thesis, Atılım University, Graduate School of Social Sciences, Ankara, 2007 (in Turkish).
  • [13] JAISWAL R.S., SARODE M.V., An overview on fuzzy logic and fuzzy elements, Int. Res. J. Comp. Sci., 2015, 3 (2), 29.
  • [14] CAGMAN N., Fuzzy logic, Bilim ve Teknik, 2006, 463, 50 (in Turkish).
  • [15] AMINIFAR S., MARZUKI A., Voltage-mode fuzzy logic controller, Indian J. Sci. Techn., 2012, 5 (11), 3630.
  • [16] ROSYIDI C.N., PUSPITOINGRUM W., JAUHARI W.A., SUHARDI B., HAMADA K., Make or buy analysis model based on tolerance allocation to minimize manufacturing cost and fuzzy quality loss, IOP Conf. Series, Mater. Sci. Eng., 2016, 114, 012082.
  • [17] YETILMEZSOY K., OZKAYA B., CAKMAKCI M., Artificial intelligence-based prediction models for environmental engineering, Neural Netw. World, 2011, 3 (11), 193.
  • [18] LEE S.Y., KIM H.G., PARK J.B., PARK Y.K., Denaturing gradient gel electrophoresis analysis of bacterial populations in 5-stage biological nutrient removal process with step feed system for wastewater treatment, J. Microbiol., 2004, 42 (1), 1.
  • [19] LEYVA-DIAZ J.C., MUNIO M.M., GONZÁLEZ-LÓPEZ J., POYATOS J.M., Anaerobic/anoxic/oxic configuration in hybrid moving bed biofilmreactor-membrane bioreactor for nutrient removal from municipal wastewater, Ecol. Eng., 2016, 91, 449.
  • [20] MANNINA G., CAPODICI M., COSENZA A., DI TRAPANI D., Carbon and nutrient biological removal in a University of Cape Town membrane bioreactor. Analysis of a pilot plant operated under two different C/N ratios, Chem. Eng. J., 2016, 296, 289.
  • [21] MAJDI NASAB A.R., SOLEYMANI S.M., NOSRATI M., MOUSAVI S.M., Performance evaluation of a modified step-feed anaerobic/anoxic/oxic process for organic and nutrient removal, Chinese J. Chem. Eng., 2016, 24, 394.
  • [22] XU X., LIU G., ZHU L., Enhanced denitrifying phosphorus removal in a novel anaerobic/aerobic/anoxic (AOA) process with the diversion of internal carbon source, Biores. Technol., 2011, 102 (22), 10340.
  • [23] ZHANG M., PENG Y., WANG C., WANG C., ZHAO W., ZENG W., Optimization denitrifying phosphorus removal at different hydraulic retention times in a novel anaerobic anoxic oxic-biological contact oxidation process, Biochem. Eng. J., 2016, 106, 26.
  • [24] YANG T., ZHANG L., WANG A., GAO H., Fuzzy modeling approach to predictions of chemical oxygen demand in activated sludge processes, Inform. Sci., 2013, 235, 55.
  • [25] ZHU G., PENG Y., MA B., WANG Y., YIN C., Optimization of anoxic/oxic step feeding activated sludge process with fuzzy control model for improving nitrogen removal, Chem. Eng. J., 2009, 151, 195.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2331d633-2cdd-4765-b0bb-283e9139c670
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.