PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new automated stretching finite element method for 2D crack propagation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents a study of crack propagation with a new 2D finite element method with the stretching of the mesh. This method affects at each propagation step new coordinates of each element node of the mesh. The structure is divided to areas and each area has its own coordinate formulas. A program in FORTRAN allows us to create a parametric mesh, which keeps the same number of nodes and elements during different steps of crack propagation. The nodes are stretched using the criterion of maximum circumferential stress (MCS). The fracture parameters such as stress intensity factors in modes I and II and the orientation angles are calculated by solving the problem by the finite element code ABAQUS.
Rocznik
Strony
869--881
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • Ecole Nationale Polytechnique, Mechanical Engineering Department, Laboratory of Applied Biomechanics and Biomaterials, ENPO, Oran, Algeria
autor
  • Ecole Nationale Polytechnique, Mechanical Engineering Department, Laboratory of Applied Biomechanics and Biomaterials, ENPO, Oran, Algeria
autor
  • Institute of Optics and Precision Mechanics, Ferhat Abbas University, Setif, Algeria
autor
  • Ecole Nationale Polytechnique, Mechanical Engineering Department, Laboratory of Applied Biomechanics and Biomaterials, ENPO, Oran, Algeria
Bibliografia
  • 1. Aliabadi M.H., 1997, Boundary element formulations in fracture mechanics, Applied Mechanics Reviews, 50, 2, 83-96
  • 2. Alshoaibi M.A., 2015, Finite element modelling of mixed mode crack propagation, International Journal of Soft Computing and Engineering (TM), 5, 5, 61-66
  • 3. Amestoy M., Bui H.D., Dang Van K., 1980, [In:] International Advances in Fracture Research, Fran¸cois D. et al. (Eds.), Oxford, 107-113
  • 4. Ariffin A.K., 2008, Fatigue life and crack path prediction in 2G structural components using an adaptive finite element strategy, International Journal of Mechanical and Materials Engineering (IJMME), 3, 1, 97-104
  • 5. Askes H., Sluys L.J., Jong B.B.C., 2001, Remeshing techniques for r-adaptive and combined h/r-adaptive analysis with application to 2D/3D crack propagation, International Journal Structural Engineering and Mechanics, 12, 5, 475-490
  • 6. Azocar D., Elgueta M., Rivara M.C., 2010, Automatic LEFM crack propagation method based on local Lepp-Delaunay mesh refinement, Advances in Engineering Software, 41, 111-119
  • 7. Babuska I., Banerjee U., 2012, Stable generalized finite element method (SGFEM), Computer Methods in Applied Mechanics and Engineering, 201-204, 91-111
  • 8. Babuska I., Belenk J., 1997, The partition of unity method, International Journal Numerical Methods Engineering, 40, 727-758
  • 9. Belytschko T., Gu L., Lu Y.Y., 1994, Fracture and crack growth by element-free Galerkin methods, Modelling and Simulation in Materials Science and Engineering, 2, 3A, 519-534
  • 10. Bouchard P.O., Bay F., Chastel Y., Tovena I., 2000, Crack propagation modelling using an advanced remeshing technique, Computer Methods Applied Mechanics Engineering, 189, 3, 723-742
  • 11. Bouchard P.O., Bay F., Chastel Y., 2003, Numerical modelling of crack propagation automatic remeshing and comparison of different criteria, Computer Methods Applied Mechanics Engineering, 192, 35/36, 3887-3908
  • 12. Boulenouar A., Benseddiq N., Mazari M., Benamara N., 2014, FE model for linear-elastic mixed mode loading: estimation of SIFs and crack propagation, Journal of Theoretical and Applied Mechanics, 52, 2, 373-383
  • 13. Chan S.K., Tuba I.S., Wilson W.K., 1970, On the finite element method in linear fracture mechanics, Engineering Fracture Mechanics, 10, 1, 1-17
  • 14. Cho J.R., 2015, Computation of 2-D mixed-mode stress intensity factors by Petrov-Galerkin natural element method, Structural Engineering and Mechanics, 56, 4, 589-603
  • 15. Duflot M., Nguyen-Dang H., 2004, Fatigue crack growth analysis by an enriched meshless method, Journal of Computational and Applied Mathematics, 168, 1/2, 155-164
  • 16. Erdogan F., Sih G.C., 1963, On the crack extension in plates under plane loading and shear, Journal of Basic Engineering, 85, 4, 519-527
  • 17. Ewalds H., Wanhill R., 1989, Fracture Mechanics, New York, Edward Arnold
  • 18. Khoei A.R., Azadia H., Moslemia H., 2008, Modeling of crack propagation via an automatic adaptive mesh refinement based on modified superconvergent patch recovery technique, Engineering Fracture Mechanics, 75, 2921-2945
  • 19. Meyer A., Rabold F., Scherzer M., 2006, Efficient finite element simulation of crack propagation using adaptive iterative solvers, Communications in Numerical Methods in Engineering, 22, 2, 93-108
  • 20. Miranda A.C.O., Meggiolaro M.A., Castro J.T.P., Martha L.F., Bittencourt T.N., 2003, Fatigue life and crack predictions in generic 2D structural components, Engineering Fracture Mechanics, 70, 10, 1259-1279
  • 21. Moes N., Dolbow J., Belytschko T. ¨ , 1999, A finite element method for crack growth without remeshing, International Journal Numerical Methods Engineering, 46, 1, 131-150
  • 22. Murat Y., 2016, The investigation crack problem through numerical analysis, Structural Engineering and Mechanics, 57, 6, 1143-1156
  • 23. Nuismer R.J., 1975, An energy release rate criterion for mixed mode fracture, International Journal of Fracture, 11, 2, 245-250
  • 24. Paris P., Erdogan F., 1963, A critical analysis of crack propagation laws, Journal of Basic Engineering, Transactions ASME, 85, 4, 528-534
  • 25. Phongthanapanich S., Dechaumphai P., 2004, Adaptive Delaunay triangulation with objectoriented programming for crack propagation analysis, Finite Elements in Analysis and Design, 40, 13/14, 1753-1771
  • 26. Portela A., Aliabadi M., Rooke D.P., 1991, The dual boundary element method effective implementation for crack problem, International Journal for Numerical Methods in Engineering, 33, 6, 1269-1287
  • 27. R´ethor´e J., Gravouil A., Combescure A., 2005, An energy-conserving scheme for dynamic crack growth using the extended finite element method, International Journal for Numerical Methods in Engineering, 63, 5, 631-659
  • 28. Sih G.C., Erdogan F., 1962, On crack extension in plants (plates) under plane loading and transverse shear, ASME Meeting WA-163, New York, NY, United States
  • 29. Sih G.C., 1974, Strain-energy-density factor applied to mixed mode crack problems, International Journal of Fracture, 10, 3, 305-321
  • 30. Singh I.V., Mishra B.K., Bhattacharya S., Patil R.U., 2012, The numerical simulation of fatigue crack growth using extended finite element method, International Journal of Fatigue, 36, 1, 109-119
  • 31. Tada H.P., Irwin G.R., 1985, The Stress Analysis of Cracks Handbook, Paris Productions Incorporated
  • 32. Tada H.P., Paris P.C., Irwin G.R., 2000, The Stress Analysis of Cracks Handbook, American Society of Mechanical Engineering
  • 33. Yan A.M., Nguyen-Dang H., 1995, Multiple-cracked fatigue crack growth by BEM, Computational Mechanics, 16, 5, 273-80
  • 34. Yan X., 2006, A boundary element modeling of fatigue crack growth in a plane elastic plate, Mechanics Research Communications, 33, 470-481
  • 35. Zaleha M., Ariffin A.K., Muchtar A., 2007, Prediction of crack propagation direction for holes under quasi-static loading, Computational and Experimental Mechanics, 141-151
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23306643-0904-413b-bd7a-d910d84c8444
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.