PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigating the capability of the Lemaitre damage model to establish the incremental sheet forming process

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the numerical and experimental investigation of the incremental sheet forming (ISF) process with the Lemaitre damage model to incrementally form parts of conical shapes. The Lemaitre damage model was prepared as a material subroutine (VUMAT) and linked to Abaqus/Explicit. The elastic–plastic parameters for the simulation were identified through tensile testing of the ASTM E8 specimen. The digital image correlation (DIC) was performed during the tensile testing to identify the damage parameters of the Lemaitre damage model. Scanning electron microscopy (SEM)-based area method was used to identify the area fraction vis-a-vis the variation of the strain. Thereafter, the identified area fractions with respect to strains have been calibrated to obtain the damage parameters through an inverse analysis approach. The identified parameters were used to form conical objects of Al1050 H14 sheets of 2 mm thickness through finite element (FE) simulation. The results obtained through FE simulation were compared with the experimental outcomes to investigate the efficiency of the Lemaitre damage model to simulate the ISF process. The responses obtained through FE simulation and experiments have been discussed in terms of limiting wall angle and forming depth, damage evolution, deformation mechanism, forming limit diagram, geometrical accuracy, forming forces, thickness distribution, and surface roughness.
Rocznik
Strony
art. no. e66, 1--18
Opis fizyczny
Bibliogr. 36 poz., il., tab., wykr.
Twórcy
autor
  • deLOGIC Lab, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India
  • deLOGIC Lab, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India
Bibliografia
  • 1. Mulay A, Satish Ben B, Ismail S, Kocanda A, Jasiński C. Performance evaluation of high-speed incremental sheet forming technology for AA5754 H22 aluminum and DC04 steel sheets. Arch Civ Mech Eng. 2018;18:1275-1287.
  • 2. Pandre S, Morchhale A, Mahalle G, Kotkunde N, Suresh K, Singh SK. Fracture limit analysis of DP590 steel using single point incremental forming: experimental approach, theoretical modeling and microstructural evolution. Arch Civ Mech Eng. 2021.
  • 3. He A, Wang C, Liu S, Meehan PA. Switched model predictive path control of incremental sheet forming for parts with varying wall angles. J Manuf Process. 2020;53:342-355.
  • 4. Liu Z, Li G. Single point incremental forming of Cu-Al composite sheets: a comprehensive study on deformation behaviors. Arch Civ Mech Eng. 2019;19:484-502.
  • 5. Cristino VA, Montanari L, Silva MB, Atkins AG, Martins PAF. Fracture in hole-flanging produced by single point incremental forming. Int J Mech Sci. 2014;83:146-154.
  • 6. Emmens WC, van den Boogaard AH. An overview of stabilizing deformation mechanisms in incremental sheet forming. J Mater Process Technol. 2009;209:3688-95.
  • 7. Li Y, Daniel WJT, Meehan PA. Deformation analysis in single-point incremental forming through finite element simulation. Int J Adv Manuf Technol. 2017;88:255-267.
  • 8. Malhotra R, Xue L, Belytschko T, Cao J. Mechanics of fracture in single point incremental forming. J Mater Process Technol. 2012;212:1573-1590.
  • 9. Jeswiet J, Young D. Forming limit diagrams for single-point incremental forming of aluminium sheet. Proc Inst Mech Eng B. 2005;219:359-364.
  • 10. Kim TJ, Yang DY. Improvement of formability for the incremental sheet metal forming process. Int J Mech Sci. 2000;42:1271-1286.
  • 11. Iseki H, Kato K, Sakamoto S. Forming limit of flexible and incremental sheet metal bulging with a spherical roller. Adv Tech Plast. 1993;1(1):1635-1640.
  • 12. Silva MB, Skjoedr M, Atkins AG, Bay N, Martins PAF. Single-point incremental forming and formability-failure diagrams. J Strain Anal Eng Des. 2008;43:15-35.
  • 13. Eyckens P, Belkassem B, Henrard C, Gu J, Sol H, Habraken AM, Duflou JR, van Bael A, van Houtte P. Strain evolution in the single point incremental forming process: digital image correlation measurement and finite element prediction. Int J Mater Form. 2011;4:55-71.
  • 14. Li Y, Liu Z, Daniel WJT, Meehan PA. Simulation and experimental observations of effect of different contact interfaces on the incremental sheet forming process. Mater Manuf Process. 2014;29:121-128.
  • 15. Henrard C, Bouffioux C, Eyckens P, Sol H, Duflou JR, Van Houtte P, Van Bael A, Duchene L, Habraken AM. Forming forces in single point incremental forming: prediction by finite element simulations, validation and sensitivity. Comput Mech. 2011;47:573-590.
  • 16. Robert C, Dal Santo P, Delaméziere A, Potiron A, Batoz JL. On some computational aspects for incremental sheet metal forming simulations. Int J Mater Form. 2008;1:1195-8.
  • 17. Xue L. Damage accumulation and fracture initiation in un cracked ductile solids subject to triaxial loading. Int J Solids Struct. 2007;44:5163-81.
  • 18. Wu SH, Song NN, Pires FMA. A comparative study of failure with incremental forming. J Phys Conf Ser. 2016.
  • 19. Guzmán CF, Yuan S, Duchene L, Saavedra Flores EI, Habraken AM. Damage prediction in single point incremental forming using an extended Gurson model. Int J Solids Struct. 2018;151:45-56.
  • 20. Malcher L, Andrade Pires FM, César De Sá JMA. An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality. Int J Plast. 2012;30-31:81-115.
  • 21. Malhotra R, Xue L, Cao J, Belytschko T. Identification of deformation mechanisms responsible for failure in incremental forming using a damage based fracture model. AIP Conf Proc. 2011;1383:469-476.
  • 22. Mirnia MJ, Shamsari M. Numerical prediction of failure in single point incremental forming using a phenomenological ductile fracture criterion. J Mater Process Technol. 2017;244:17-43.
  • 23. Gatea S, Ou H, Lu B, McCartney G. Modelling of ductile fracture in single point incremental forming using a modified GTN model. Eng Fract Mech. 2017;186:59-79.
  • 24. Yue ZM, Chu XR, Gao J. Numerical simulation of incremental sheet forming with considering yield surface distortion. Int J Adv Manuf Technol. 2017;92:1761-8.
  • 25. Pham QT, Lee BH, Park KC, Kim YS. Influence of the post-necking prediction of hardening law on the theoretical forming limit curve of aluminium sheets. Int J Mech Sci. 2018;140:521-536.
  • 26. Cao TS, Gaillac A, Montmitonnet P, Bouchard PO. Identification methodology and comparison of phenomenological ductile damage models via hybrid numerical-experimental analysis of fracture experiments conducted on a zirconium alloy. Int J Solids Struct. 2013;50:3984-99.
  • 27. Vaz M, Munoz-Rojas PA, Cardoso EL, Tomiyama M. Considerations on parameter identification and material response for Gurson-type and Lemaitre-type constitutive models. Int J Mech Sci. 2016;106:254-265.
  • 28. Verma A, Saxena RK. Determination of Lemaitre damage parameters for DP590 steel using teacher-learner based optimization. J Phys Conf Ser. 2019.
  • 29. Tasan CC, Hoefnagels JPM, Geers MGD. Identification of the continuum damage parameter: an experimental challenge in modeling damage evolution. Acta Mater. 2012;60:3581–9.
  • 30. Amaral R, Teixeira P, Azinpour E, Santos AD, De Sá JC. A study on the performance of ductile failure models under different range of stress triaxiality states with experimental validation. J Phys Conf Ser. 2016.
  • 31. de Souza Neto EA, Peric D, Owen DR. Computational methodsfor plasticity: theory and applications. Wiley; 2011.
  • 32. Liu Y. Designation: E8/E8M-09 standard test methods for tensiontesting of metallic materials. West Conshohocken: ASTM International; 2009.
  • 33. 1050 H14 Aluminum. https://www.makeit.from. com/ material.properties/ 1050-H14-Alumi num. Accessed 24 May 2021.
  • 34. Chung W, Kim B, Lee S, Ryu H, Joun M. Finite element simulation of plate or sheet metal forming processes using tetrahedral MINI-elements. J Mech Sci Technol. 2014;28:237-243.
  • 35. Mohammadi A, Vanhove H, Van Bael A, Duflou JR. Towards accuracy improvement in single point incremental forming of shallow parts formed under laser assisted conditions. Int J Mater Form. 2016;9:339-351.
  • 36. Hussain G, Gao L. A novel method to test the thinning limits of sheet metals in negative incremental forming. Int J Mach Tools Manuf. 2007;47:419-435.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-232ec661-6517-4dca-8552-0788b3c1c8a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.