Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Object classification using X-ray images
Języki publikacji
Abstrakty
Głównym celem artykułu było zbadanie możliwości wykorzystania cech geometrycznych obiektów w procesie ich klasyfikacji. Materiał badawczy stanowiły zdjęcia rentgenowskie ziaren trzech odmian pszenicy: kama, kanadyjskiej i rosa. W ramach pracy opracowano metody pozwalające na wyznaczenie cech geometrycznych obiektów znajdujących się na obrazach cyfrowych, takich jak długość, szerokość, średnica, pole i obwód. Otrzymane wyniki wykazały istotne różnice pomiędzy parametrami charakteryzującymi kształt i wielkości poszczególnych odmian pszenicy i możliwość ich zastosowania w procesie klasyfikacji. Procent poprawnie zaklasyfikowanych ziaren za pomocą algorytmu k-średnich wynosił 92%. Nieco lepsze wyniki, rzędu 93%, uzyskano za pomocą metod K-najbliższych sąsiadów i wek-torów wspierających. Najlepiej rozróżnialną odmianą okazała się rosa w porównaniu do odmian kanadyjskiej i kama.
The main aim of the presented research was to assess the possibility of utilizing geometric features in object classifica-tion. Studies were conducted using X-ray images of kernels belonging to three different wheat varieties: Kama, Canadi-an and Rosa. As a part of the work, image processing methods were used to determine the main geometric grain parameters, including the kernel area, kernel perimeter, kernel length and kernel width. The results indicate significant differences between wheat varieties, and demonstrates the importance of their size and shape parameters in the classification process. The percentage of correctness of classification was about 92% when the k-Means algorithm was used. A classification rate of 93% was obtain using the K-Nearest Neighbour and Support Vector Machines. Herein, the Rosa variety was better recognized, whilst the Canadian and Kama varieties were less successfully differentiated.
Czasopismo
Rocznik
Tom
Strony
206--213
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland
autor
- Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland
Bibliografia
- [1] R. C. Gonzalez, R. E. Woods, Digital Image Processing, Prentice-Hall Inc., New Jersey, 2002.
- [2] R. Tadeusiewicz, Komputerowa analiza i przetwarzanie obrazów, Wydawnictwo Fundacji Postępu Telekomunikacji, Kraków 1997.
- [3] B. Mirkin, Clustering: A Data Recovery Approach, Chapman and Hall/CRC, 2012.
- [4] D. F. Morrison, Multivariate Statistical Methods, Brooks/Cole Thomson Learning, Belmont, California, 2005.
- [5] M. Romaniuk, O. Hryniewicz, Interval based, nonparametric approach for resampling of fuzzy numbers. 2019, Soft Computing, 23 (14), 5883–5903.
- [6] J. Koronacki, J. Ćwik, Statystyczne systemy uczące się, WNT 2008.
- [7] M. Krzyśko, W. Wołyński, T. Górecki, M. Skorzybut, Systemy uczące się. WNT, Warszawa, 2008.
- [8] H. Czachor, M. Charytanowicz, S. Gonet, J. Niewczas, G. Józefaciuk, L. Lichner, Impact of long term mineral and organic fertilization on water stability, wettability and porosity of aggregates of two silt loamy soils. 2015, European Journal of Soil Science, 66 (3), 577–588.
- [9] M. Klatka, E. Grywalska, M. Partyka, M. Charytanowicz, E. Kiszczak-Bochyńska, J. Roliński: Th17 and Treg cells in adolescents with Graves' disease. Impact of treatment with methimazole on these cell subsets, 2014, Autoimmunity, 47 (3), 201-211.
- [10] P. Kulczycki, P. A. Kowalski, Bayes Classification for Nonstationary Patterns, International Journal of Computational Methods, 2015, 12, ID 1550008.
- [11] T. Guz, Z. Kobus, E. Kusińska, R. Nadulski, Morphometric features of rye caryopses stored in a silo, Inżynieria Rolnicza Agricultural Engineering, 2012, 1 (4), 71-79.
- [12] P. Zapotoczny, Discrimination of wheat grain varieties using image analysis and neural networks. Part I. Single kernel texture. Journal of Cereal Science, 2012, 54, 60-68.
- [13] M. Charytanowicz, J. Niewczas, P. Kulczycki, P. A. Kowalski, S. Łukasik, Discrimination of Wheat Grain Varieties Using X-ray Images. Information Technologies in Biomedicine, E. Pietka, P. Badura, J. Kawa, W. Więcławek (red.), Advances in Intelligent Systems and Soft Computing, Springer, 2016, 471, 39-50.
- [14] M. Charytanowicz, P. Kulczycki, P. A. Kowalski, S. Łukasik, R. Czabak-Garbacz, An Evaluation of Utilizing Geometric Features for Wheat Grain Classification using X-ray Images. Computers and Electronics in Agriculture, 2018, 144, 260-268.
- [15] J. Niewczas, A. Strumiłło, Szczypiński, P. Makowski, W. Woźniak, Computer system for analysis of x-ray image of wheat grains, International Agrophysics 1999.
- [16] G. D. Jasmin, Shape based Object Classification Rusing Knowledge Vector Code International Journal of Innovative Research in Computer and Communication Engineering, 2017, 5 (7), 13440.
- [17] D. Zhang, G. Lu, Review of shape representation and description techniques. Pattern Recognition, 2004, 37, 1-19.
- [18] M. Zhu, T. J. Hastie, Feature Extraction for Nonparametric Discriminant Analysis. Journal of Computational and Graphical Statistics, 2003, 12(1), 101-120.
- [19] Visual Studio 2017 – Now Ready for Your Windows Application Development Needs, https://blogs.windows.com/windowsdeveloper/2017/03/07/visual-studio-2017-now-ready-windows-application-development-needs/, [22.04.2020].
- [20] Qt Software, http://doc.qt.io/, [01.04.2020].
- [21] C++ Programming Language, https://www.techopedia.com/definition/26184/c-programming-language, [22.04.2020].
- [22] About OpenCV, https://opencv.org/about/, [22.04.2020].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-232c7f9f-d32a-4d94-8d82-a1b72bc1381f