PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research into properties of dust from domestic central heating boiler fired with coal and solid biofuels

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badania nad właściwościami pyłów z kotłów małej mocy opalanych węglem i stałymi biopaliwami
Języki publikacji
EN
Abstrakty
EN
The aim of this research was to assess the content and composition of the pollutants emitted by domestic central heating boilers equipped with an automatic underfeed fuel delivery system for the combustion chamber. The comparative research was conducted. It concerned fuel properties, flue gas parameters, contents of dust (fly ash) and gaseous substances polluting the air in the flue gases emitted from a domestic CH boiler burning bituminous coal, pellets from coniferous wood, cereal straw, miscanthus, and sunflower husks, coniferous tree bark, and oats and barley grain. The emission factors for dust and gaseous air pollutants were established as they are helpful to assess the contribution of such boilers in the atmospheric air pollution. When assessing the researched boiler, it was found out that despite the development in design and construction, flue gases contained fly ash with a significant EC content, which affected the air quality.
PL
Celem pracy badawczej była ocena ilości i składu substancji zanieczyszczających emitowanych przez kotły małej mocy, wyposażone w samoczynny podajnik paliwa do komory spalania. Przeprowadzono badania porównawcze właściwości paliw, parametrów spalin, zawartości pyłu (popiołu lotnego) i gazowych substancji zanieczyszczających powietrze w emitowanych spalinach z kotła CO małej mocy spalającego węgiel kamienny (ekogroszek), pelety z drewna drzew iglastych, ze słomy zbożowej, z miskanta, z łusek słonecznika, korę drzew iglastych, ziarno owsa i ziarno jęczmienia. Ustalono wskaźniki emisji pyłu i gazowych substancji zanieczyszczających powietrze, pomocnych w ocenie udziału tego rodzaju kotłów w zanieczyszczeniu środowiska. Oceniając badany kocioł stwierdzono, że mimo osiągniętego postępu w konstrukcji, spaliny zawierają popiół lotny, ze znaczną zawartością węgla EC (black carbon), w ilości wpływającej na jakość powietrza.
Rocznik
Strony
20--27
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Institute of Environmental Engineering, Polish Academy of Sciences, Poland
  • Institute of Environmental Engineering, Polish Academy of Sciences, Poland
autor
  • Institute of Environmental Engineering, Polish Academy of Sciences, Poland
autor
  • Institute of Environmental Engineering, Polish Academy of Sciences, Poland
autor
  • Institute of Environmental Engineering, Polish Academy of Sciences, Poland
autor
  • Institute of Environmental Engineering, Polish Academy of Sciences, Poland
autor
  • Institute of Environmental Engineering, Polish Academy of Sciences, Poland
Bibliografia
  • [1]. Bartoszewicz-Burczy, H. (2012). Biomass potential and its energy utilization in the Central European countries, Energetyka, (12), pp. 860-866. (in Polish)
  • [2]. Chen, Y, Sheng, G, Bi, X, Feng, Y, Mai, B & Fu, J. (2005). Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China, Environmental Science and Technology, 39(6), pp. 1861-1867.
  • [3]. CSO (Central Statistical Office of Poland); Energy consumption in households in 2009, Warsaw 2012.
  • [4]. CSO (Central Statistical Office of Poland); Energy from renewable sources in 2013, Warsaw 2014.
  • [5]. Czop, M. & Kajda-Szcześniak, M. (2013). Environmental impact of straw based fuel combustion, Archives Of Environmental Protection, 39(4), pp. 71-80.
  • [6]. Ehrlich, C., Noll, G. & Kalkoff, W.D. (2007). Determining PM- emission fractions (PM10, PM2.5, PM1.0) from small-scale combustion units and domestic stoves using different types of fuels including bio fuels like wood pellets and energy grain. (http://rook.woelmuis.nl/Documenten/DATA/EHRLICH_.PDF. (09 April 2015)).
  • [7]. Estrellan, C.R. & Iino, F. (2010). Toxic emissions from open burning, Chemosphere, 80, pp. 193-207.
  • [8]. Geng, C., Chen, J., Yang, X., L. Ren, L., Yin, B., Liu, X. & Bai, Z. (2014). Emission factors of polycyclic aromatic hydrocarbons from domestic coal combustion in China, Journal of Environmental Sciences, 26(1), pp. 160-166.
  • [9]. Glasius, M., Tetzel, M., Wahlin, P., Bossy, R., Stubkjćr, J., Hertel, O. & Palmgren, F. (2008). Characterization of particles from residential wood combustion and modelling of spatial variation in a low-strength emission area, Atmospheric Environment, 42(37), pp. 8686-8697.
  • [10]. Guo, H., Lee, S.C., Ho, K.F., Wang, X.M. & Zou, S.C. (2003). Particle- associated polycyclic aromatic hydrocarbons in urban air of Hong Kong, Atmospheric Environment, 37(38), pp. 5307-5317.
  • [11]. Hitzenberger, R. & Tursic, J. (2008). Scientific Report COST 633, Particulate Matter - Properties Related to Health Effects.
  • [12]. International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans, volume 100 (E). A review of human carcinogens: Personal habits and indor combustions. Lyon, France: IARC; 2012 Jan 1.
  • [13]. Kiesewetter, G., Borken-Kleefeld, J., Schöpp, W., Heyes, C., Thunis, P., Bessagnet, B., Terrenoire, E., Fagerli, H., Nyiri, A. & Amann, M. (2015). Modelling street level PM10 concentrations across Europe: source apportionment and possible futures, Atmospheric Chemistry and Physics, 15(3), pp. 1539-1553.
  • [14]. Konieczyński, J. & Pasoń-Konieczyńska, A. (1999). The aggregate emission index of air pollutants from hard coal combustion, Archiwum Ochrony Środowiska, 25(1), pp. 29-40.
  • [15]. Nussbaumer, T., Czasch, C., Klippel, N., Johansson, L. & Tullin, C. (2008). Particle emissions from biomass combustion in IEA countries. Survey on measurements and emission factors. (http://www.ieabcc.nl/publications/Nussbaumer_et_al_IEA_Report_PM10_Jan_2008.pdf. (09 April 2015)).
  • [16]. PN-G-04511 (1980). Solid fuels - Determination of Moisture. Polish Standard, 1980. (in Polish)
  • [17]. PN-G-04512 (1980). Solid Fuels - Determination of Ash Content by Gravimetric Method. Polish Standard, 1980. (in Polish)
  • [18]. PN-G-04513 (1981). Solid fuels - Determination of gross calorific value and calculation of net calorific value. Polish Standard, 1981. (in Polish)
  • [19]. PN-G-04571 (1998). Solid fuels - Determination of carbon, hydrogen and nitrogen contents using the automatic analysers - Macro method. Polish Standard, 1998. (in Polish)
  • [20]. PN-G-04584 (2001). Solid fuels - Determination of total sulphur and of ash sulphur content with the use of the automatic analysers. Polish Standard, 2001. (in Polish)
  • [21]. PN-ISO 10396 (2001). Stationary source emissions - Sampling for the automated determination of gas concentrations. Polish Standard, 2001. (in Polish)
  • [22]. PN-ISO 1928 (2002). Solid mineral fuels - Determination of gross calorific value by the bomb calorimetric method and calculation of net calorific value. Polish Standard, 2002. PN-ISO 1928 (2002). (in Polish)
  • [23]. PN-ISO 587 (2000). Solid mineral fuels - Determination of chlorine using Eschka mixture. Polish Standard, 2000. (in Polish)
  • [24]. PN-Z-04030-07 (1994). Air purity protection - Tests for dust content - Measurement of concentration and mass flow rate of particulate matter in waste gases by gravimetric method. Polish Standard, 1994. (in Polish).
  • [25]. Schmidl, C., Luisser, M., Padouvas, E., Lasselsberger, L., Rzaca, M. & Ramirez-Santa Cruz, C., Handler, M., Peng, G., Bauer, H. & Puxbaum, H. (2011). Particulate and gaseous emissions from manually and automatically fi red small scale combustion systems, Atmospheric Environment, 45(39), pp. 7443-7454.
  • [26]. Schmidl, C., Marr, I.L., Caseiro, A., Kotianová, P., Berner, A., Bauer, H., Kasper-Giebl, A. & Puxbaum, H. (2008). Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid- European Alpine regions, Atmospheric Environment, 42(1), pp. 126-141.
  • [27]. Simoneit, B.R.T. (2002). Biomass burning - a review of organic tracers for smoke from incomplete combustion, Applied Geochemistry, 17(3), pp. 129-162.
  • [28]. Seljeskog, M., Goile, F., Sevault, A. & Lamberg, H. (2013). Particle emission factors for wood stove fi ring in Norway. Trondheim, SINTEF Energi AS.
  • [29]. Szewczyńska, M., Ekiert, E. & Pośniak, M. (2006). Uncontrolled burning processes as sources of the formation of dioxins and furans, Bezpieczeństwo pracy: nauka i praktyka, 1, pp. 8-11. (in Polish)
  • [30]. Szkarowski, A. & Janta-Lipińska, S. (2013). Examination of Boiler Operation Energy-ecological Indicators During Fuel Burning with Controlled Residual Chemical Underburn, Annual Set The Environment Protection, 15, pp. 981-995. (in Polish)
  • [31]. Watson, J.G., Chow, J.C. & Houck, J.E. (2001). PM2,5 chemical source profiles for vehicle exhaust, vegetative burning, geological materials, and coal burning in Northern Colorado during 1995, Chemosphere, 43(8), pp. 1141-1151.
  • [32]. Zhang, Y., Schauer, J.J., Zhang, Y., Zeng, L., Wei, Y., Liu, Y. & Shao, M. (2008). Characteristics of particulate carbon emissions from real-world chinese coal Combustion, Environmental Science and Technology, 42(14), pp. 5068-5073.
  • [33]. Zhang, J. & Smith, K.R.(2007). Household air pollution from coal and biomass fuels in China: Measurements, Health Impacts, and Interventions, Environmental Health Perspectives, 115(6), pp. 848-855.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2323c4e7-ee04-4173-ab59-152426699d96
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.