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Zastosowanie logicznego rachunku różniczkowego 
oraz binarnego diagramu decyzyjnego w analizie ważności
System availability evaluation includes different aspects of system behaviour and one of them is the importance analysis. This 
analysis supposes the estimation of system component influence to system availability. There are different mathematical approach-
es to the development of this analysis. The structure function based approach is one of them. In this case system is presented in 
form of structure function that is defined the correlation of system availability and its components states. Structure function enables 
one to represent mathematically a system of any complexity. But computational complexity of structure function based methods is 
time consuming for large-scale system. Decision of this problem for the calculation of importance measures can be realized based 
on application of two mathematical approaches. One of them is Direct Partial Boolean Derivative. New equations for calculating 
the importance measures are obtained in terms of these derivatives. Other approach is Binary Decision Diagram (BDD), which 
supports efficient manipulation of Boolean algebra. In this paper new algorithms for calculating of importance measures by Direct 
Partial Boolean Derivative based on BDD are proposed. The experimental results of comparison these algorithms with other show 
the efficiency of new algorithms for calculating Direct Partial Boolean Derivative and importance measures.

Keywords:	 decision diagram, importance analysis, logical differential calculus, reliability engineering.

Ocena gotowości systemu, analiza czułości, miary ważności oraz optymalna konstrukcja to istotne zagadnienia, które stały się 
obiektem badań z zakresu inżynierii niezawodności. Istnieją różne podejścia matematyczne do owych problemów. Jednym z nich 
jest podejście oparte na funkcji struktury. Funkcja struktury umożliwia analizę systemów o wszelkim stopniu złożoności. Jednakże, 
w przypadku sieci o dużej skali, złożoność obliczeniowa metod opartych na funkcji struktury sprawia, że metody te są czasochłon-
ne. W przedstawionej pracy proponujemy wykorzystanie dwóch metod matematycznych analizy ważności. Pierwszą z nich jest 
bezpośrednia cząstkowa pochodna boole'owska, w kategoriach której opracowano nowe równania do obliczania miar ważności. 
Drugą jest binarny diagram decyzyjny, który wspiera efektywną manipulację na wyrażeniach algebry Boole'a. W artykule zapro-
ponowano dwa algorytmy służące do obliczania bezpośredniej cząstkowej pochodnej boole'owskiej w oparciu o binarny diagram 
decyzyjny funkcji struktury. Wyniki eksperymentów wykazują skuteczność nowo opracowanych algorytmów w obliczaniu bezpo-
średniej cząstkowej pochodnej boole'owskiej oraz miar ważności.

Słowa kluczowe:	 diagram decyzyjny, analiza ważności, logiczny rachunek różniczkowy, inżynieria niezawodno-
ści.
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1. Introduction

A mathematical representation and description or creation of 
mathematical model of the initial object is an important step in reli-
ability/availability analysis. There are some types of such mathemati-
cal models in reliability engineering. As a rule the mathematical mod-
el type is conditioned by mathematical method that is used for system 
availability or reliability estimates. One of mathematical model is the 
structure function of a system that is defined by one-to-one mapping 
of system state and states of the system components. The structure 
function can be interpreted as Boolean function if the initial system 
has two possible states as functioning and failure only and the system 
analysed in the stationary state [4, 32]. Therefore mathematical meth-
ods of Boolean algebra can be used for the structure function analysis 
and as result for estimation of system availability. There are a lot of 
algorithms for the calculation of special indices and measures in reli-
ability engineering based on Boolean algebra methods. Some of them 
are Importance Measures (IMs). 

IMs were introduced by Birnbaum in [6]. These measures express 
the contribution of a component state to system reliability/availability. 
At the present time there are different types of IMS that allows in-
vestigating different aspects of the influence of appointed component 
state change to behaviour of system reliability or availability. Every 
system component has a measure of its importance to the system func-
tioning and failure according to values of IMs, that are calculated for 
every component. IMs have been widely used for identifying a sys-
tem’s weakness and supporting system improvement activities from 
design perspective. With the importance values of all components, 
proper actions can be taken on the weakest component to improve 
system availability at minimal cost or effort.

Detailed analysis and comparison of IMs are presented, for exam-
ple, in papers[8, 13, 19, 25]. Different mathematical approaches are 
used and developed for calculating IMs, some of which are Boolean 
methods [3, 8, 5], Markov model [12], minimal cuts/paths set meth-
ods [11, 19], and Logical Differential Calculus [35]. In this paper, we 
develop a method for computing IMs based on Logical Differential 
Calculus with the application of Binary Decision Diagram (BDD).
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Logical Differential Calculus is a mathematical approach that per-
mits to investigate changes in Boolean function depending on chang-
es of its variables values [1, 33]. Therefore, this tool can be used to 
evaluate the influence of every system component state change on the 
system performance level [24, 32, 37]. In this paper the Direct Par-
tial Boolean Derivatives are used for the development of algorithms 
for the estimation of system availability. However, the Logical Dif-
ferential Calculus methods and Direct Partial Boolean Derivatives in 
particular are characterized by high computational complexity that in-
creases depending on the number of system components. In Boolean 
algebra there are some tools to decide this problem and one of them is 
BDD. A BDD is one of the more effective methods for the representa-
tion of a Boolean function of large dimensions[1].

A BDD is used not only in Boolean algebra. A BDD is widely 
and efficiently used in reliability analysis[14, 15, 16, 28]. Methods 
for transformation of a Fault Tree to the ordered BDD (OBDD) are 
proposed in papers [17, 28]. These methods permit to substantiate the 
correct application of OBDD in reliability analysis. The development 
of these methods and OBDD use for other problems in reliability anal-
ysis has been proposed in a lot of papers. For example, new algorithm 
for the manipulation of series and parallel systems based on BDD are 
investigated in [31]. The paper authors [18, 21, 22, 23] consider the 
OBDD application for reliability analysis of dynamic, phased-mission 
and networking systems.

The computation of IMs by BDD is considered in papers [8] 
and[14]. Authors of paper [14] investigated IMs definitions in terms 
of OBDD. In papers [14] and [22] similar algorithms for the calcu-
lation of IM as Birnbaum Importance are proposed based on equal 
interpretation of this measure definition/equation. The Birnbaum Im-
portance is calculated directly using the OBDD. But these algorithms 
can be used for the OBDD only. 

The combination of two mathematical tools for IMs computation. 
In this paper we develop the results that have been considered in [31, 
37] for BDD. The strong evidence of Logical Differential Calculus 
application in importance analysis is considered in [37] and new equa-
tions for computation of the IMs as Structural Importance, Birnbaum 
Importance and Criticality Importance in the terms of Logical Dif-
ferential Calculus have been are proposed in the paper [37]. In this 
paper we use these equations for the development a new BDD-based 
approach. We compare of IMs values calculated by the new algo-
rithms and classical definition of IMs (these definition are in [3] for 
Structural Importance and in [6, 12] for Birnbaum Importance). New 
algorithms allow obtaining the IMs values that are equal with the IMs 
values computed by the definitions in [3, 6, 12]. Therefore the princi-
pal step of the new approach for the calculation of IM presented in this 
paper is the application of Logical Differential Calculus, in particular 
Direct Partial Boolean Derivatives that have been considered in [1, 
33, 37]. Two algorithms for the calculation of Direct Partial Boolean 
Derivatives are proposed in this paper and compared with alternative 
algorithms.

The remainder of the work is organized as follows. Section 2 in-
troduces concepts of the system structure function, Logical Differen-
tial Calculus and BDD. In Section 3 the calculation of IMs by Logical 
Differential Calculus is described. In this section the definitions of 
IMs in terms of Logical Differential Calculus are considered. Two 
algorithms for the IMs quantification based on BDD are considered in 
this section too. These algorithms are founded on two mathematical 
tools: Logical Differential Calculus and BDD. A benchmark study is 
presented to illustrate the proposed algorithms.

2. Mathematical background

2.1.	 The system structure function

Consider the mathematical model of the system of n components. 
The component state is denoted asxi (i = 1, …, n). The value xi = 1 
corresponds to the operable state of the i-th component, and xi = 0, to 
its failure.Every system component is characterized by probabilities 
of its states. Theprobability of i-th component failure is:

	 qi = Pr{xi = 0}. 	 (1)

Then, the probability of operability of the i-th component is de-
fined as:

	 pi = Pr{xi = 1}.	 (2)

Consider the system in stationary state. The system availabil-
ity in stationary state is represented mathematically by the structure 
function[4, 27]:

	 ϕ (x) = ϕ(x1, …, xn):   {0, 1}n→ {0, 1},	 (3)

where the vector x = (x1, …, xn) is the vector of the system compo-
nents states.

Note, the structure function (3) can be interpreted as Boolean 
function. As a rule, a coherent system is investigated in reliability en-
gineering. Such system will be considered in this paper. The structure 
function of a coherent system has the following assumptions [6]:

The system and its components have two states: up (working) and (a)	
down (failed);
All system components are relevant to the system;(b)	
The system structure function is monotone non-decreasing: (c)	 ϕ(x1, 
…, 1, …, xn)≠ϕ(x1, …, 0, …, xn);
The failure and repair rate of the components are constant;(d)	
Repaired components are as good as new.(e)	
Principal indices and measures of the system can be calculated 

based on the structure function. The one of them is the system una-
vailability that is the probability of the system failure[27]:

	 U = Pr{ϕ(x) = 0}	 (4)

and the system availability that is probability of the system function-
ing state:

	 A = Pr{ϕ(x) = 1}.	 (5)

The system unavailability and availability correlate by the equa-
tion:

	 U+ A = 1	

The system unavailability (4) and availability (5) are calcu-
lated based on every system component state xi probabilities (1) and 
(2).For example, the structure function of the system in Fig.1 of 4 
components is defined as:

	 ϕ (x) = AND(x1,OR(x2, AND(x3, x4))) = x1∧(x2∧ (x3∧x4)).     (6)

Fig. 1. The series-parallel system example
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The system availability is calculated according to (5) taking into 
account the truth table of the structure function or its canonical DNF:

	 φ( )x x x x x x x x x x x x x x x x x x x x x= ∨ ∨ ∨ ∨1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

and the system availability is calculated according to (5):

A p q p p p p q q p p q p p p p q p p p p p p p p p= + + + + = +1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 3 4 1 2 −− p p p p1 2 3 4.

(7)

The system unavailability (4) and availability (5) are important 
measures, but these measures don’t allow to investigate all aspect of 
the system availability. Therefore other measures must be defined that 
permit to estimate of the system behavior in point of view of reli-
ability analysis. It can be, for example, IMs or other indices. The use 
of these measures and indices are caused the development of special 
methods and algorithms for these estimations. There are different 
mathematical approaches that are used for development and calcula-
tion of reliability indices and measures. And one of them are based on 
Boolean algebra, because the structure function (3) can be interpreted 
as a Boolean function. Two mathematical tools will be used in this 
paper: BDD and Logical Differential Calculus.

A BDD is a graphical form of a Boolean function [1] that is ef-
ficiency for the representation and analysis of a Boolean function of 
large dimension. The second tool is the Logical Differential Calculus 
[2, 10, 33]. Mathematical methods of Logical Differential Calculus 
permit to investigate the influence of a variable value change to the 
Boolean function value. In papers[24, 32, 37] some methods and al-
gorithms of applying Logical Differential Calculus in reliability engi-
neering are considered. In this case the system availability agrees with 
a Boolean function value and the i-th component state is interpreted as 
the i-th variable value. Consider these tools below.

2.2.	 Logical Differential Calculus in Reliability Analysis

The application of Logical Differential Calculus in reliability 
analysis has been considered in [24, 32, 37]. Authors of these papers 
use Boolean Derivative (Boolean Difference).In this paper we pro-
pose to use other derivative that allows analysis of the influence of 
variable value change to a function value in more detail. It is Direct 
Partial Boolean Derivative.

Definition 1. The Direct Partial Boolean Derivative of the func-
tion ϕ(x) with respect to variable xi reflects the fact of changing the 
function from j to j  when the value of variable xi changes from s to 

s  [34]:

	 ∂ → ∂ → =
= =

ϕ
ϕ ϕ

( ) ( )
, , ) ( , )

j j x s s
(s j s j

i
i i1  if  and 

0, other     
x x

                                  




	 (8)

where ϕ(si, x) = φ(x1,…, xi−1, s, xi+1,…, xn),s, j∈ {0, 1}; =1−j, =1−s; 
and ≡ is the symbol of equivalence operation.

Direct Partial Boolean Derivatives allows mathematical represen-
tationof a system fault that is caused by the i-th system component 
failure by derivatives ∂ → ∂ →ϕ( ) ( )1 0 1 0xi  and ∂ → ∂ →ϕ( ) ( )1 0 0 1xi  . 

Derivatives ∂ → ∂ →ϕ( ) ( )0 1 0 1xi  and ∂ → ∂ →ϕ( ) ( )0 1 1 0xi  describe 

the system renewal if the i-th component repaired
Direct Partial Boolean Derivative of a coherent system has the 

following properties for monotone function [29, 37]:

	 ∂ → ∂ →ϕ( ) ( )1 0 0 1xi  = ∂ → ∂ →ϕ( ) ( )0 1 1 0xi  = 0,	 (9)

	 ∂ → ∂ →ϕ( ) ( )0 1 0 1xi  = ∂ → ∂ →ϕ( ) ( )1 0 1 0xi .	 (10)

Because the structure function of a coherent system ϕ(x) is mono-
tone (assumption c) we will investigate the derivatives of a system 
fault ∂ → ∂ →ϕ( ) ( )1 0 1 0xi  and renewal ∂ → ∂ →ϕ( ) ( )0 1 0 1xi . 

Therefore the denotation will be used for these derivatives below:

	 ∂ϕ(x)/∂xi = ∂ → ∂ →ϕ( ) ( )0 1 0 1xi = ∂ → ∂ →ϕ( ) ( )1 0 1 0xi 	

and the Direct Partial Boolean Derivative ∂ϕ(x)/∂xiis calculated as[34, 
37]:

	 ∂ ∂ = ∧ϕ ϕ ϕ( ) ( , ) ( , )x x xxi i i1 0 .	 (11)

Direct Partial Boolean Derivative (11) permits us to determine the 
boundary states of a system for which the change of the i-th compo-
nent state cause the change of the system availability. Nonzero val-
ues of the derivatives indicate the system states (the vector of system 
components states) for which the i-th component fault causes the sys-
tem failure (Fig. 2).

For example, consider the system in Fig.1 with the structure func-
tion (6). The structure function truth table of this system and Direct 
Partial Boolean Derivatives with respect to variable xi (i =1, 2, 3, 4) 
are shown in Table 1. Note, the symbol “*” in this table marks the 
state vectors for which derivatives don’t exist. The nonzero values of 
derivatives indicate the boundary states of the system. These states are 
defined by the vector states:

for the first component –– x= (1↔0, 0, 1, 1), x = (1↔0, 1, 0, 0), x 
= (1↔0, 1, 0, 1), x = (1↔0, 1, 1, 0), x = (1↔0, 1, 1, 1);
for the second component –– x = (1, 1↔0, 0, 0), x = (1, 1↔0, 0, 
1), x = (1, 1↔0, 1, 0);
for the third component–– x = (1, 0, 1↔0, 1);
for the third component –– x = (1, 0, 1, 1↔0).

Direct Partial Boolean Derivative with respect to the first variable 
x1 has 5 nonzero values that indicate boundary states. In this case, as-
tate change of the first component influences the system availability. 
Vector state x= (1↔0, 0, 1, 1)indicates that the first component fail-
ure causes the system failure if the second component isn’t function-
ing and the third and forth components are working. Vector statesx = 
(1↔0, 1, 0, 0),x = (1↔0, 1, 0, 1), x = (1↔0, 1, 1, 0), x = (1↔0, 1, 
1, 1) define the system failure for any states of the third and the forth 
components if the second component is functioning. Other derivatives 
in Table 1 have similar meanings.

The algorithms for calculating Direct Partial Boolean Derivatives 
have been considered in numerous papers. Trivial algorithm has been 
considered by Akers in [2]. This result has been developed by Boch-
mann, Posthoff and Steinbach [7, 26]. In paper [30] a parallel version 
of these algorithms has been proposed. The calculation of Boolean 
Derivative (Boolean Difference) based on the BDD has been inves-
tigated in [24]. However, this algorithm cannot be used for Direct 

Fig. 2. The interpretation of Direct Partial Boolean Derivative
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Partial Boolean Derivatives calculation. Therefore the algorithm for 
the calculation of Direct Partial Boolean Derivatives based on BDD 
isn’t developed. 

2.3. Binary Decision Diagram

Consider some background of BDD before the development of 
algorithm for the calculation of Direct Partial Boolean Derivatives 
based on BDD.

BDD is a widely used tool for reliability analysis. Some methods 
for reliability analysis based on this tool are discussed in papers [14, 
15, 16]. BDD is based on a disjoint decomposition of Boolean func-
tion called the Shannon expansion [14]. This expansion for the struc-
ture function (3) can be defined as:

ϕ ϕ ϕ( ) ( , ) ( , )x x x= ∧ ∨ ∧x xi i i i1 0 .         (12)

In order to express Shannon decomposition concisely, the if-
then-else (ite) format[9] is defined as: 

ϕ(x) = ite(xi=0, φ(0i, x), φ(1i,  x)).         (13)

A BDD is a directed acyclic graph of a Boolean function repre-
sentation [9]. For structure function (3), this graph has two terminal 
nodes, labelled 0 and 1. Each non-terminal node is labelled with a 
structure function variable xi and has two outgoing edges. The left 
edge is labelled “0” and represents the fail state of system component. 
The other outgoing edge is labelled “1” and represents the operational 
state of a system component.

Terminal nodes of the BDD correspond to the system state. Non-
terminal node outgoing edges are interpreted as component states. 
The probabilistic interpretation of the system assumes that every edge 
from the node to which the variable xi is assigned with the label si is 
marked by the i-th component state probability pi or qi (Fig. 3). The 
node in this diagram assigned with the i-th variable xi, and the outgo-
ing edges corresponding to ϕ(1i, x) and ϕ(0i, x)that correspond to the 
Shannon decomposition (12). This equation in arithmetic form is the 
following:

ϕ ϕ ϕ ϕ ϕ ϕ( ) ( , ) ( , ) ( , ) ( , ) (x x x x x= ⋅ + ⋅ − ⋅( ) ⋅ ⋅( ) = ⋅x x x x xi i i i i i i i i1 0 1 0 11 0i i ix, ) ( , )x x+ ⋅ϕ

Node probability is calculated using the equation [14]:

	
Pr{ ( )} Pr ( , ) Pr ( , )

Pr ( , )

ϕ ϕ ϕ

ϕ

x x x

x

= ⋅{ }+ ⋅{ } =
= ⋅ { }+ ⋅

x x

p q
i i i i

i i i

1 0

1 PPr ( , )ϕ 0i x{ }
.	 (14)

Note that the paths from the root to the terminal node in a BDD 
are mutually disjoint. Therefore the system availability can be calcu-
lated based on (12) and (14) for the system that is represented in form 
of the BDD:

A p qi i i i= = = ⋅ ={ }+ ⋅ ={ }Pr{ ( ) } Pr ( , ) Pr ( , )ϕ ϕ ϕx x x1 1 1 0 1 	 (15)

and conforms with the probability of the sum of paths from the root 
node to the terminal node “1”. Rules for this calculation are presented 

Table 1.	 The structure function and Direct Boolean Derivatives of the series-parallel system (Fig. 1)

x1  x2  x3x4 ϕ(x) ∂ϕ(x)/∂x1 ∂ϕ(x)/∂x2 ∂ϕ(x)/∂x3 ∂ϕ(x)/∂x4

0  0  0  0
0  0  0  1
0  0  1  0
0  0  1  1
0  1  0  0 
0  1  0  1
0  1  1  0 
0  1  1  1
1  0  0  0
1  0  0  1
1  0  1  0
1  0  1  1
1  1  0  0
1  1  0  1
1  1  1  0
1  1  1  1

0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1

*
*
*
*
*
*
*
*
0
0
0
1
1
1
1
1

*
*
*
*
0
0
0
0
*
*
*
*
1
1
1
0

*
*
0
0
*
*
0
0
*
*
0
1
*
*
0
0

*
0
*
0
*
0
*
0
*
0
*
1
*
0
*
0

Fig. 3.	 Interpretation of component state and basic computational rules in 
BDD

Fig. 4. Graphical and software implementation of the BDD of system 
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in Fig. 3. The system unavailability is calculated similarly but paths 
from the root node to the terminal node labelled “0” are analysed in 
this case.

For example, consider a system 2-out-of-3 with structure func-
tion (6). The system is defined by the BDD (Fig.4). The calculation 
of the system availability and unavailability is implemented based on 
two sub-diagrams. Every diagram is the sum of paths from the BDD 
top to one of the terminal nodes (Fig.5). 

According to the sub-diagrams in Fig.5 the system availabil-
ity and unavailability are calculated as:
	 A = p1(p2 + q2p3p4) = p1p2 + p1p3p4-p1p2p3p4	 (16)

	 U = q1 + p1q2(q3 + p3q4).	 (17)

The system availability (16) is equal to the system availability 
(7) that was defined according to typical rules. Therefore, BDD can 
be used for the calculation of the system’s availability and unavail-
ability.

3. Importance Analysis

System’s unavailability (4) and availability (5) are widely used 
measures in reliability engineering, but these measures do not enable 
the analysis of a change of the system availability depending on a 
change of the component states. There are measures for estimating the 
influence of component states’ changes on system availability called 
IMs. Importance analysis allows the estimation of influence of every 
system component breakdown to the system failure. This paper pro-
vides new algorithms for importance analysis based on Direct Partial 
Boolean Derivative and BDD of structure function. 

3.1.	 Importance Measures

Consider some of IMs and calculation algorithms based on on 
Direct Partial Boolean Derivative.

Structural Importance (SI). The SI is one of the simplest mea-
sures in importance analysis and this measure focuses on the topo-
logical aspects of a system. According to the definition in papers [3]
this measure determines the proportion of working states of a system 
in which the working of the i-th component makes the difference be-
tween system failure and operation:

	 SIi
i

n= −
ρ

2 1 	 (18)

where ρi  is the number of system states when the change in compo-

nent state results in system failure.
The number ρi  in [3] is defined by special analysis of values of 

the structure function, but according to the definition 1 this number 
can be calculated as the number of nonzero values of the Direct Partial 
Boolean Derivatives (11) ∂φ(x)/∂xi.

There is one more definition of SI [37]. It is Modified Struc-
tural Importance (MSI) that represents the influence of the i-th system 
component failure to system failure:

	 MSIi
i

i
=

=

ρ
ρ 1

	 (19)

where ρi=1  is the number of system states for which ϕ(1i, x) = 1 (it 

is defined by the structure function (3)).
The values of SI (18) and MSI (19) are presented in Table 

2. According to this Table the first system component has maximal 
influence to the system availability in terms of the system’s topology.
The values of the MSI indices show that the first component is domi-
nant in terms of system topology because only this component’sfault 
causes the system’s failure. The breakdown of the third or the forth 
component has minimal influence to the system failure according val-
ues of SI and MSI (Table 2).

Birnbaum Importance (BI). The BI is one of basic IMs and this 
measure is defined as the probability that the system is sensitive to 
inoperative state of the i-th system component[19]:

	   BIi i i= = − =Pr{ ( , ) } Pr{ ( ) }ϕ ϕ0 0 1 0x , x .	

In paper[37] new equation for the BI calculation has been pro-
posed based on Direct Partial Boolean Derivatives:

	 BI x xi i= ∂ ∂ ={ }Pr ( )ϕ 1 .	 (20)

According to [37] this equation is proofed as:

I xB i i i i i( ) Pr ( , ) ( , ) Pr ( , ) Pr ( , )= ∧( ) ={ } = ={ }⋅ ={ }ϕ ϕ ϕ ϕ1 0 1 1 1 0 1x x x x ==

= − ={ }⋅ − ={ } = − ={ }⋅ − −Pr ( , ) Pr ( , ) Pr ( , ) Pr1 1 0 1 0 0 1 1 0 1 1ϕ ϕ ϕ ϕi i ix x x (( , )

Pr ( , ) Pr ( , ) Pr ( , )

0 0

0 0 1 0 0 0

i

i i i

x

x x x

=( ){ } =
= ={ }− ={ }⋅ ={ }ϕ ϕ ϕ

and for a coherent system with a monotonically structure function 
[29]:

I xB i i i i

i

( ) Pr ( , ) Pr ( , ) Pr ( , )

Pr ( ,

= ={ }− ={ }⋅ ={ } =
=

ϕ ϕ ϕ

ϕ

0 0 1 0 0 0

0

x x x

x)) Pr ( , ) ( , ) Pr ( , ) Pr ( , )={ }− = ∧ ={ } = ={ }− ={ }0 1 0 0 0 0 0 1 0ϕ ϕ ϕ ϕi i i ix x x x .

For example, the structure function of the system (Table 1) 
has 5 nonzero values for the derivatives ∂ϕ(x)/∂x1, so the first compo-
nent BI is calculated as:

	 IB1=Pr{∂ϕ(x)/∂x1=1}=q2p3p4+p2q3q4+p2q3p4+p2p3q4+p2p3p4,

Fig. 5.	 Sub-diagrams for the system availability and unavailability calcula-
tion

Table 2.	 SI and MSI indices for the system in Fig. 1

i ρi ρi=1 SIi MSIi

1 5 5 0.625 1.000
2 3 4 0.250 0.750
3 1 2 0.125 0.500
4 1 2 0.125 0.500
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and for other components:

	 IB2=Pr{∂ϕ(x)/∂x2 = 1} =p1q3q4+p1q3p4+p1p3q4.

	 IB3=Pr{∂ϕ(x)/∂x3 = 1} =p1q2p4

	 IB4=Pr{∂ϕ(x)/∂x4 = 1} =p1q2p3.

Therefore SI, MSI and BI indices can be calculated based on Direct 
Partial Boolean Derivatives.

Criticality Importance (CI). BI (20) describes the influence of a 
failure of the i-th system component on the system’s availability, but 
doesn’t take into account the probability of this component’s failure. 
CI adjusts it and is defined as the probability that the i-th system com-
ponent is relevant to the system’s failure if it has failed [19]:

	 CI BI q
Ui i

i= ⋅ .	  (21)

where BIi is the i-th system component BI measure (20); qi is 
probability of the i-th system failure (1) and U is the system’s 
unavailability (4).

Dynamic Reliability Indices (DRI). DRI have been consid-
ered in paper [36]. DRIs allow the estimation of a component 
relevant to system failure. There are two groups of DRI: Com-
ponent Dynamic Reliability Indices (CDRI) and Dynamic Inte-
grated Reliability Indices (DIRI).

CDRI indicates the influence of the i-th component’sfault 
on the system’s failure and is similar to the definition of modi-
fied SI, but CDRI includestwo probabilities: (a) the probability 
of the system’s failure caused by the i-th component’s inopera-
tion and (b) the probability of a component failure:

	 CDRI MSI qi i i= ⋅ .              (22)

where MSIiis defined by (19); qiis probability of a 
component failure (1).

DIRI is the probability of system failure that is 
caused by one of the system components in-opera-
tion (one of n):

	

IDIRI ICDRI ICDRIi q
q
q i

n

i

n
= −

=
≠

=
∏∑ ( )1

11
.    (23)

Therefore SI, MSI, BI, CI, CDRI and DIRI indi-
ces can be calculated based on Direct Partial Boolean 
Derivatives and the development of the algorithm for 
computation of these derivatives is important step in 
importance analysis based on quantification estima-
tion of IMs.

3.2.	 Direct Partial Boolean Derivative Calcula-
tion based on BDD

One of possible BDD-basedmethod for calculat-
ingIMs has been presented in [14]. The authors of 
the paper  [14] proposed to define components states 
by the structure function BDD for computation of 
IM according to typical equation of IMs. Logical 
Differential Calculus has been used for calculation 
of some IMs in [35]. However, the proposed algo-

rithms don’t account for specific of the system with two states (avail-
able and unavailable).

We develop two algorithms for calculating Direct Partial Boolean 
Derivative (11) based on BDD of the structure function. These algo-
rithms have identical basic principle: it is construction of the “tree of 
paths” by analyzing the paths from the root to the sink node of the 
BDD that agrees with conditions:

ϕ ϕ( , ) ( , )0 0 1 1i ix x= =and           (24)

Therefore the tree of paths for condition ϕ(0i, x) = 0 unites all 
paths from the root to the sink node 0 that include out coming edges 
of the non-sink node xi labelled 0. The tree of paths for the condition 
ϕ(1i, x) = 1 is constructed similarly. 

For example, consider the construction of the tree of paths for the 
series-parallel system by the BDD (Fig. 4). Form the tree of paths of 
the derivative ∂ϕ(x)/∂x2 for the condition ϕ(02, x) = 0 (Fig. 6). The 
variable, on which the derivative is calculated, isn't included in the 

Fig. 6. The tree of paths for condition of the BDD in Fig.4

Fig. 7. Example of the Algorithm 1
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tree of paths and conforms to the root la-
belled “S”. It is the second variable x2 in 
this example. Two paths are analysed for 
the specified condition (Fig. 6). The first 
(left) path has value of the first variable as 
0 (x1 = 0) and doesn’t include the varia-
blesx3 and x4. Therefore these variables(x3 
and x4) can have any value (these values 
are indicated in the tree of paths by dotted 
line). The second path has variable x1 = 1 
and variable x3with two values. In case of 
x3= 0 the variable x4 can have any value 
because it is absent in this path. But the 
variable x4= 0 if x3= 1. Therefore the tree 
of paths in Fig. 6 locates all paths for the 
condition ϕ (02, x) = 0.

Two algorithms are developed for the 
Direct Partial Boolean Derivative (11) cal-
culation by the BDD based on the use of 
the trees of paths. 

The Algorithm 1 has three steps. The 
tree of paths for the condition ϕ(0i, x) = 0 
is formed at the first step. The tree of paths 
for the condition ϕ(1i, x) = 1 is constructed 
at the second step. The third step of the 
algorithm compares these two trees. The 
general part of these trees is a decision that 
is corresponded to non-zero values of the 
Direct Boolean Derivative (11).

For example, Fig. 7 illustrates the calculation 
of the Direct Partial Boolean Derivative ∂ϕ(x)/∂x1 
based on the Algorithm 1 for BDD of the structure 
function (6) of the series-parallel system in Fig.1 
with the structure function (6). The BDD of this 
function is presented in Fig.4. The first step of the 
algorithm is forming the tree of paths for condition 
ϕ(01, x) = 0. This tree building is shown in detail for 
the second variable ϕ(02, x) = 0above (Fig. 6). The 
tree for condition ϕ(01, x) = 0 includes all possible 
values of variables x2, x3 and x4, because the sub-
diagram for this condition doesn’t include nodes of 
these variables. The second step of the algorithm 
permits to obtain the tree of paths for condition ϕ(11, 
x) = 1. This tree includes all paths from the out-com-
ing edge labelled 1 of the first variable x1 to the sink 
node 1 of the BDD. The third step of the algorithm 
is comparing two trees that satisfy condition ϕ(01, 
x) = 0 and ϕ(11, x) = 1 accordingly. The final tree of 
paths (the algorithm result) includes paths that are 
equal for two trees. Therefore, the final tree includes 
5 paths that are conformed with non-zero values 
of the derivative ∂ϕ(x)/∂x1:x= (1↔0, 0, 1, 1), x = 
(1↔0, 1, 0, 0), x = (1↔0, 1, 0, 1), x = (1↔0, 1, 1, 
0), x = (1↔0, 1, 1, 1).

Algorithm 1 and Algorithm 2 are tested based 
on the sets of benchmarks LGSynth91 with the tool 
ABC (A System for Sequential Synthesis and Verifi-
cation developed by Berkeley Verification and Syn-
thesis Research Center) [20]. This benchmark has the 
PLA – EXPRESSO format and Table 3 summarizes 
the selected benchmarks, specifying the number of 
input variables, the number of output functions, the 
number of product terms appearing in the bench-
mark and their analysis for BDDs construction.Fig. 8. Example of the Algorithm 2

Table 3.	 Benchmark characteristics and analysis for BDD 

Benchmark Input Output Product 
terms

Number of non-termi-
nal nodes in the BDD

Number of variables of 
the structure function

5xp1
alu4
apex1
apex3
apex4
b12
bw
clip
con1
cps

duke2
e64

ex1010
ex4
ex5
inc

misex1
misex2
misex3
misex3c
pdc
rd53
rd73
rd84
sao2
seq

squar5
Z5xp1

7
14
45
54
9

15
5
9
7

24
22
65
10

128
8
7
8

25
14
14
16
5
7
8

10
41
5
7

10
8

45
50
19
9

28
5
2

109
29
65
10
28
63
9
7

18
14
14
40
3
3
4
4

35
8

10

75
1028
206
280
438
431
87

167
9

654
87
65

1024
620
256
34
32
29

1848
305

2810
32

141
256
58

1459
32

128

5
11
9
9

10
5
6

10
7

19
8

10
11
10
8
7
7

13
15
9

15
6
8
9

11
13
6
8

14
163
15
46

136
8

20
68
13

105
41
10

459
76
8

15
12
13

1640
103
21
15
70

130
76
18
6
8
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These benchmarks are used for the comparison, control and ex-
amination of two algorithms. In addition these algorithms have been 
compared with the similar algorithm that has been proposed in [16] 
and with algorithm proposed in [38]. Experiments permit the compu-
tational complexity of the proposed algorithms to be estimated. Com-
putational complexities such as the number of recursive calls of algo-
rithms are shown in Fig. 9 and the t`ime for computation of non-zero 
values of Direct Partial Boolean Derivatives is presented in Fig. 10. 

The analysis of the data in Fig.9 and Fig.10 
shows that the two proposed algorithms have 
similar characteristics but Algorithm 2 has 
lesser computational complexity, which is well 
seen in the chart on Fig. 9. Characteristics of the 
algorithms in [16] and [38] are worse in com-
parison of proposed algorithms. Therefore, the 
Algorithm 2 can be used for the calculation of 
non-zero values of Direct Partial Boolean De-
rivatives for the structure function preferable. 
The non-zero values of Direct Partial Boolean 
Derivatives permit to calculate IMs (18) – (23). 
It is important that these equations are agree 
with well know definitions of IMs. Therefore 
IMs values calculated by the proposed Algo-
rithm 1and Algorithm 2 based on the definitions 
(18) – (23) are equal IMs values computed by 
the definition from [3, 6, 12].

For example, consider the benchmark rd84 
(Table 3). In the Table 4 SI, BI and CI values 
are shown that are calculated by new algorithm 
(Algorithm 2) and traditional algorithm. This 
Table consists of two parts. The first of them 
include IMs values that are calculated based on 
the definitions in papers [3, 6, 12]. IMs values 
computed by new algorithms are described in 
the second part of this Table. Note IMs values 
are equal for two proposed algorithms (Algo-
rithm 1 and Algorithm 2). Therefore IMs values 
for two different approaches are equal, because 
new algorithms realize equations for IMs cal-
culation (18), (19) and (21) – (23) that have the 
mathematical substantiation of the correlation 
with IMs definitions in [3], [6], [12].

4.  Conclusions and Future Work

This work presented an efficient approach 
to analyze the reliability and importance analy-
sis. This approach can be summarized in follow-
ing characteristics. First characteristic of pro-
posed approach is possibility of calculating IMs 

using mathematical apparatus Direct Par-
tial Boolean Derivatives, which is based 
on new equations for IMs (18) – (23).The 
background of this approach is the com-
putation of non-zero values of derivatives 
that are used in these equations of IMs. 
Next aspect is based on development of 
new algorithms for calculation of Direct 
Partial Boolean Derivatives based on 
BDD, which allows analysis of the func-
tion of large dimensions.  The last impor-
tant point of presented work is the intro-
duction an experimental analysis based 
on BDD algorithms, which are highly ef-
ficientlyboth in computational time and 
storage demand for importance analysis 

and they also make it possible for us to study practical and large sys-
tems. Research based on this approach as sensitivity analysis, impor-
tance measures, and optimal design issues of large systems will be-
come more important in the future. Algorithms proposed in this work 
can be generalized for the non-coherent system. In this case the calcu-
lation of IMs will be based on the analysis of two Direct Partial 
Boolean Derivatives ∂ → ∂ →ϕ( ) ( )0 1 0 1xi  and ∂ → ∂ →ϕ( ) ( )0 1 1 0xi

Fig. 9. Comparison of algorithms computational complexity by number of recursive calls

Fig. 10. Comparison of algorithms computational complexity by computational time (in μsec)calls

Table 4.	 The calculation of indexes SI, SIM, BI, CI, CDRI for benchmark rd84

xi qi pi SIi [3] BIi [6] CIi [12]
New algorithm

SIi BIi CIi

1 0.3 0.47 0.0078125 0.122472 0.0401868 0.0078125 0.122472 0.0401868
2 0.1 0.9 0.0078125 0.095256 0.0104188 0.0078125 0.095256 0.0104188
3 0.4 0.6 0.0078125 0.142884 0.0625129 0.0078125 0.142884 0.0625129
4 0.5 0.5 0.0078125 0.171461 0.0937693 0.0078125 0.171461 0.0937693
5 0.1 0.9 0.0078125 0.095256 0.0104188 0.0078125 0.095256 0.0104188
6 0.3 0.7 0.0078125 0.122472 0.0401868 0.0078125 0.122472 0.0401868
7 0.2 0.8 0.0078125 0.107163 0.0234423 0.0078125 0.107163 0.0234423
8 0.1 0.9 0.0078125 0.095256 0.0104188 0.0078125 0.095256 0.0104188
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