Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work presents the results of the research of the effect of the inoculant Emgesal Flux 5 on the microstructure of the magnesium alloy AZ91. The concentration of the inoculant was increased in samples in the range from 0.1% to 0.6%. The thermal processes were examined with the use of Derivative and Thermal Analysis (DTA). During the examination, the DTA samplers were preheated up to 180 °C. A particular attention was paid to finding the optimum amount of inoculant, which would cause fragmentation of the microstructure. The concentration of each element was verified by means of a spark spectrometer. In addition, the microstructures of the samples were examined with the use of an optical microscope, and an image analysis with a statistical analysis using the NIS-Elements program were carried out. Those analyses aimed at examining the differences between the grain diameters of phase αMg and eutectic αMg+γ(Mg17Al12) in the prepared samples as well as the average size of each type of grain by way of measuring their perimeters. This paper is an introduction to a further research of grain refinement in magnesium alloys, especially AZ91. Another purpose of this research is to achieve better micro-structure fragmentation of magnesium alloys without the related changes of the chemical composition, which should improve the mechanical properties.
Czasopismo
Rocznik
Tom
Strony
15--20
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
- Lodz Univeristy of Technology, Department of Materials Engineering and Production Systems, Łódź, Poland
autor
- Lodz Univeristy of Technology, Department of Materials Engineering and Production Systems, Łódź, Poland
autor
- Lodz Univeristy of Technology, Department of Materials Engineering and Production Systems, Łódź, Poland
autor
- Lodz Univeristy of Technology, Department of Materials Engineering and Production Systems, Łódź, Poland
Bibliografia
- [1] Dieringa, H. et al. (2018). Mg Alloys: Challenges and Achievements in Controlling Performance, and Future Application Perspectives. Orlov D., Joshi V., Solanki K., Neelameggham N. (Eds.) Magnesium Technology 2018. Cham. The Minerals, Metals & Materials Series.
- [2] Luo, A.A. (2013). Magnesium casting technology for structural applications. Journal of Magnesium and Alloys. 1, 2-22 DOI: 10.1016/j.jma.2013.02.002.
- [3] Mordike, B.L. & Ebert, T. (2001). Magnesium. Properties – applications – potential. Materials Science and Engineering. A302, 37-45. DOI: 10.1016/S0921-5093(00)01351-4.
- [4] Władysiak, R. & Kozuń, A. (2015) Structure of AlSi20 Alloy in Heat Treated Die Casting. Archives of Foundry Engineering. 15(1), 113-118. DOI: 10.1515/afe-2015-0021.
- [5] Rapiejko, C., Pisarek, B. & Pacyniak, T. (2017). Effect of intensive cooling of alloy AZ91 with a chromium addition on the microstructure and mechanical properties of the casting. Archives of Metallurgy and Materials. 62(4), 2199-2204. DOI: 10.1515/amm-2017-0324.
- [6] Lin, H., Yang, M., Tang, H. & Pan, F. (2018). Effect of minor Sc on the microstructure and mechanical properties of AZ91 Magnesium Alloy. Progress in Natural Science: Materials International. 28, 66-73. DOI: 10.1016/j.pnsc. 2018.01.006.
- [7] Yu, Z., Xiaofeng, H., Ya, L., Zhenduo, M., Ying, M. & Yuan, H. (2017). Effects of samarium addition on as-cast microstructure, grain refinement and mechanical properties of Mg-6Zn-0.4Zr magnesium alloy. Journal of Rare Earths. 355(5), 494-502. DOI: 10.1016/S1002-0721(17)60939-6.
- [8] Zhang, Y., Huang, X., Ma, Y., Chen, T., Li, Y. & Hao, Y. (2017). Effects of Cu addition on microstructure and mechanical properties of as-cast Mg-6Zn magnesium alloy. China Foundry. 14(4), 251-257. DOI: 10.1007/s41230-017-6094-2.
- [9] Zhang, Y. et al. (2017) The influences of Al content on the microstructure and mechanical properties of as-cast Mg-6Zn magnesium alloys. Materials Science & Engineering A. A686, 93-101. DOI: 10.1016/j.msea.2016.12.122.
- [10] Zhi, H., Qun, H., Hong, Y., Xiaoping, J., Yuansheng, R. (2016). The influences of Al content on the microstructure and mechanical properties of as-cast Mg-6Zn magnesium alloys. Rare Metal Materials and Engineering. 45(9), 2275-2281. DOI: 10.1016/S1875-5372(17)30016-4
- [11] Liu, L. et al. (2017) Rare Earth Element Yttrium Modified Mg-Al-Zn Alloy: Microstructure, Degradation Properties and Hardness. Materials. 10(5), 477-487. DOI: 10.3390/ ma10050477.
- [12] Jun, Ch., Qing, Z. & Quanan L. (2018) Microstructure and Mechanical Properties of AZ61 Magnesium Alloys with the Y and Ca Combined Addition. International Journal of Metalcasting. 12(4), 897-905 DOI: 10.1007/s40962-018-0222-7.
- [13] Zhang, W., Xiao, W., Wang, F. & Ma Ch. (2016). Development of heat resistant Mg-Zn-Al-based magnesium alloys by addition of La and Ca: Microstructure and tensile properties. Journal of Alloys and Compounds. 684, 8-14. DOI:10.1016/j.jallcom.2016.05.137
- [14] Chaudry, U.M., Kim, Y.S. & Hamad, K. (2018). Effect of Ca addition on the room-temperature formability of AZ31 magnesium alloy. Materials Letters. 238, 305–308. DOI: 10.1016/j.matlet.2018.12.013.
- [15] Li, H. et al. (2018) Influence of Ca addition on microstructure, mechanical properties and corrosion behavior of Mg-2Zn alloy. China Foundry. 15(5), 363-371. DOI:10.1007/s41230-018-7203-6.
- [16] Pietrowski, S. & Rapiejko, C. (2011). Temperature and microstructure characteristics of silumin casting AlSi9 made with investment casting method. Archives of Foundry Engineering. 11(3), 177-186.
- [17] Data Emgesal Flux 5. Retrived January 13, 2019 from: https://www.lhoist.com/sites/lhoist/files/brochure_emgesalr_-_en.pdf.
- [18] Rapiejko, C., Pisarek, B, Czekaj, E. & Pacyniak, T. (2014). Analysis of AM60 and AZ91 Alloy Crystallisationin ceramic moulds by thermal derivative analisys (TDA). Archive of Metallurgy and Materials. 59(4). DOI: 10.2478/amm-2014-0246.
- [19] PN-EN 1753:2001. Magnesium and magnesium alloys. Magnesium alloy ingots and castings.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-231ac458-bb93-4dcb-8e57-4a8bf6fce2c7