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Abstract 

The goal of the paper is to present the application of decoupled homogenization method to the modeling of hyperelas-

tic composite with inclusions. The method presented in the paper is illustrated by numerical analysis of a trunk door seal. 

The decoupled homogenization method was used to find macroscale properties of hyperelastic material. The method al-

lows for the determination of the equivalent properties of a composite material based on its structure and the results of 

numerical experiments. Unlike the coupled method, the results are not transferred in every iteration between scales during 

computations which leads to lower calculation costs. The analyzed micro model consisted of a hyperelastic matrix and 

stiff inclusions in the form of spheres of carbon black material. The decoupled procedure uses evolutionary algorithm to 

obtain macro model material properties. The finite element method is used during analyses of micro scale models. 
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1. INTRODUCTION 

Nowadays, reducing the time of numerical cal-

culations without changing the quality of calcula-

tions is one of the top prorities. For this purpose, 

among others, homogenization is being used (Madej 

et al., 2008; Fish, 2013; Rauch et al., 2015), which 

allows one to find equivalent material properties for 

complex structures and replace composite with ho-

mogeneous structure. This has the effect of shorten-

ing the time of creating a numerical model and a 

significant acceleration of numerical analysis with a 

smaller number of finite elements. In the paper, the 

equivalent, macro scale, material properties of hy-

perelastic matrix with inclusions of carbon black 

using evolutionary algorithms are determined. The 

presented method is general and can be used for 

various types of composites with inclusions. The 

resulting equivalent material properties can be used 

in macro structure analysis allowing significant sim-

ulation time reduction.  

Section 2 of the paper describes hyperelastic ma-

terial models and the carbon black inclusion parame-

ters. The Representative Volume Element (RVE) 

creation and decoupled homogenization schema is 

presented. The Evolutionary Algorithm (EA) used 

during decoupled procedure and the optimization 

problem formulation are shown. Section 3 presents 

the results of a numerical modeling of a trunk seal 

using methods described in section 2.  

2. MATERIALS AND METHODS 

2.1. Hyperelastic materials 

Hyperelastic materials are described in the 

works by Fung (1993), Rackl (2015), Prevost et al. 

(2011). These materials can undergo large elastic 

deformations while retaining their original proper-

ties. During deformation, models with hyperelastic 

properties behave in a non-linear manner and defor-

mations are not directly proportional to the given 
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load. These materials can only be subjected to iso-

choric deformations, which do not affect the volume 

change. Hyperelastic materials are based on the def-

inition of the strain density energy function W. The 

stress components are shown in the equation: 

 0

ij

ij

W
S

E





 (1) 

where: ρ0 - the density in the zero-stress state, Eij - 

the strain tensor component, Sij - the stress tensor 

component. 

The strain energy can also be represented by the 

Lagrangian stresses Tij, as shown in the following 

equation: 
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where: xi/aj - the deformation gradient tensor, xi – 

the coordinates for the deformed state of the body in 

cartesian coordinates, aj - coordinates in a state of 

zero stress of the body. 

The relationship between the Cauchy σij, La-

grange Tij and Kirchhoff Sij stresses are presented 

below: 

j i
ij ip ij j

p

x a
T S S T

a x




 
 

 
 (3) 

0 0

i ji
ij pi

p

x xx
T S

a a a




 


  

 
 

  
 (4) 

0 0j ji
ij mi ij m

m m

a aa
T S

x x x




 
 

 

 
 

  
 (5) 

The constitutive equation for hyperelastic mod-

els is given by equation (6), which depends on the 

invariants of the Cauchy-Green deformation tensor:  

   1 2 3 1 2, , , ,W W I I I W I I J   (6) 

where: W – strain energy function, Ii – invariant of 

deformation tensor, J – isochoric deformation. 

The expansion using invariant equations is 

shown below:  
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where: 2

i  - principal stretches. 

Strain energy of incompressible material is a 

function of two invariants of the deformation tensor 

and takes the form of the equation: 
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 (8) 

Typical hyperelastic materials models can be 

grouped into three categories: 

 Nearly-/fully-incompressible based on strain in-

variants: 

a) Mooney-Rivlin (1st and 2nd strain invariants), 

b) Yoeh (1st strain invariant), 

c) Neo-Hookean (1st strain invariant). 

 Nearly-/fully-incompressible based on 1st strain 

invariants: 

a) Arruda-Boyce (1st strain invariant), 

b) Gent (1st strain invariant). 

 Incompressible based on principal stretches: 

a) Ogden. 

Depending on the choice of the type of Mooney-

Rivlin material model, they are characterized by the 

possibility of using them for specific strain ranges. 

In the case of a 2-term model, its range of applicabil-

ity is 90 to 100%, but it does not properly describe 

the compression effect. For 5- and 9-term models, 

they are suitable for deformations above 100% up to 

200%. The 9-terms Mooney-Rivlin material model, 

which strain energy function is represented by the 

following equation is used in the paper: 

   
3

2

1 2

1

1
3 3 ( 1)

i j

ij el

i j

W c I I J
d 

      (9) 

where: d, ci,j – material constants, Jel – elastic vol-

ume coefficient. 

Initial bulk modulus κ0 is determined by the 

formula (10): 

0

1

d
   (10) 

2.2. Carbon black as the inclusions material 

Carbon black is described in the works by 

Kyungwhan et al. (2018), Lopez Jimenez & Pelle-

grino (2012) and Xu et al. (2012). The material is 

pure elemental carbon in the form of colloidal parti-

cles. It is usually produced in the form of furnace 

carbon black and thermal carbon black. The first 

type of production process uses heavy aromatic oils 

that are pyrolysis at controlled pressure and tempera-

ture. Natural gas is used to generate thermal carbon 

black, which is decomposed into technical carbon 
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black and in hydrogen in a hot furnace. Both pro-

cesses have limited access to air during production. 

The final product of these two production processes 

is carbon black in the form of fine granules or pow-

der. 

There are different types of carbon black, for ex-

ample:  

a) N 550 – characterized by inclusions with a small 

surface area and low abrasion resistance. Provides 

production of extruded profiles, hoses, belts, brake 

diaphragms, and plastic piping with the greatest 

accuracy (web page Industrial Rubber Carbon 

Blacks). 

b) N 762 – characterized by low reinforcing and 

high loading capacity. Used for the production of 

hoses, molded goods (web page Industrial Rubber 

Carbon Blacks). 

c) N 990 – provides improvement of key dynamic 

properties while reducing the cost of quality of ni-

trile compounds (Thompson, 2010). 

The carbon black sample structures are shown in 

figure 1. 

Carbon black is mainly used for the production 

of tires and other rubber products and as a pigment 

for paints and polymer filler materials. The carbon 

black structure is characterized by the fact that it is 

distributed in random way and different sizes of 

inclusions can be present in composite. In order to 

determine the homogenized properties of the com-

posite with carbon black inclusions, the RVE model 

was build. The RVE is constructed on the base of 

known distribution of sizes of inclusions and known 

spherical shape. To build the RVE histograms taking 

into account the percentage of the volume of inclu-

sions were used (figure 2).  

a)  b)  c)  

Fig. 1. Structure Classification of example carbon black: a) high structure N550; b) moderate structure N762; c) low structure N990 

(Thompson, 2010). 

 

a)  

b)  

Fig. 2. Crystallite size distribution for a) N990, N774 and N134 
(Ungar et al., 2002), b) size distribution used in the paper. 

 

2.3. Evolutionary algoritm (EA) 

The optimization problems with multimodal ob-

jective functions were solved using evolutionary 

algorithms (Michalewicz (1996); Burczyński et al. 

(2020)), which implement mechanisms similar to 

those found in natural evolution of species. Individ-

uals compete with each other, cross each other, mu-

tate until they get the best fit for optimization crite-

ria. The individuals carry information about design 

variables in chromosomes containing genes. The one 

chromosome individuals are considered in the paper. 

The genes can directly be used as a design variable 

due to use of floating-point representation. The EA 

iterative algorithm flowchart is as follows: 

a) the initial population is created, 

b) the fitness function is evaluated for each individ-

ual(chromosome), 

c) the condition of detention is checked, 

d) individuals(chromosomes) are selected, 
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e) genetic operators are used, 

f) a new population is created, 

g) go to b) if the stop condition is not fulfilled. 

The selection consists of selecting the chromo-

somes that will be used to create the next generation. 

Selection alone does not introduce any new individ-

ual into the population. In the article, rank selection 

was used, which consists of arranging the individu-

als according to the value of adaptation and selection 

according to the order. In the evolutionary algo-

rithm, crossover operation and mutations are used as 

the basic evolutionary operators, the first of which 

always occurs and the second is not necessarily. The 

crossover operator can be divided into simple and 

arithmetic. The first of these is the exchange of cut-

off parts of genetic material and the emergence of 

two new chromosomes. Arithmetic crossing, on the 

other hand, consists in creating an individual con-

sisting of a linear combination of gene values from 

parental individuals. There are many mutation op-

erators distinguished: uniform, with Gaussian distri-

bution, or boundary. In this article the first two were 

used, therefore the differences between them will be 

briefly presented. The mutation with the Gaussian 

distribution can be distinguished from the even mu-

tation by the fact that it is characterized by a random 

gene selection in the chromosome using the Gaussi-

an distribution and not with a uniform distribution. 

The optimization multipopulation, version of evolu-

tionary algorithm, also called distributed evolution-

ary algorithms (Burczyński et. al, 2020) is used in 

the paper. The population of individuals is divided 

into subpopulations. The subpopulations evolve in 

almost independent way, only from time to time a 

migration of certain individuals occurs, causing the 

exchanging of individuals between subpopulations. 

2.4. Decoupled homogenization scheme 

The decoupled homogenization method is used 

to determine the surrogate properties of the compo-

site made from hyperelastic material with stiff elas-

tic inclusions. A detailed description of the decou-

pled homogenization method can be found in the 

work by Terada et al. (2013). To identify homoge-

nized material parameters for macroscale, numerical 

material tests (NMT) in microscale are performed. 

The number of test and boundary conditions should 

be determined in such a way that the composite 

properties are best reflected on a macro scale. The 

models in micro scale in the paper are numerically 

tested for boundary conditions showed in figure 3.  

a)  b)  
c)  d)  e)  

f)  
g)  h)  

i)  j)  

k)  l)  m)  n)  
o)  

p)  
r)  s)  t)  

 

Fig. 3. The numerical material tests in microscale: a) extension z+; b) extension z-; c) extension y-; d) extension x+; e) extension x-; f) 

extension y+; g) compression z-; h) compression z+; i) compression x-; j) compression x+; k) compression y+; l) compression y-; m) 

shear x+; n) shear y+; o) shear z+; p) shear y-; r) shear x-; s) shear z-; t) coordinate system. 
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The decoupled method allows computations to 

be performed in each scale without transferring 

strains and stresses fields between models in each 

step. The constitutive equation for the macroscale is 

discovered on the basis of the numerical tests at the 

microscale composite model. The result of numeri-

cal tests in microscale like stress-strain or force-

displacements relations are used to determine equiv-

alent, homogenized, hyperelastic material properties 

in macro scale. The problem of obtaining material 

properties is formulated as a optimization problem 

and must be solved using global optimization meth-

od due to multimodal objective function. The evolu-

tionary algorithms are used in the paper to solve the 

optimization problem. The hyperelastic material 

properties for homogenized model are coded into 

genes of a chromosome. The micromodel was ana-

lysed by prescribing displacements and measuring 

reaction forces. The value of the objective function 

is the sum of relative errors for each load case c and 

applied displacements: 

0

1 1 0

| ( ) |
( ) *100%

| |

m n

ci ci

c i ci

x x
f

x 




ch
ch  (11) 

where: 
0cix  - means reaction value from the micro-

model, ( )cix ch
 
- reaction value from the homoge-

nized model for material parameters described by 

chromosome ch genes, for displacement step i and 

load case c. 

The box constrains on the gene’s values are 

used. The closer the fitness function is to zero, the 

better matched are the micro and homogenized mod-

el results. The material properties of the composite 

in micromodel can be different than in homogenized 

model. 

3. NUMERICAL EXAMPLE 

The trunk door seal made of a composite materi-

al is analyses as a numerical example. The matrix 

was made of hyperelastic material, while the elastic 

inclusions were in the form of carbon black. The 

decoupled method presented in previous section was 

used.  

The carbon black model showed in figure 2b is 

used in the numerical example. The distribution of 

sizes of the inclusions used in the micro model is 

shown in table 1. 

 
 

Table 1. The size distribution of carbon black. 

Diameter, nm PCS 

2 4 pcs 

4 16 pcs 

6 10 pcs 

8 7 pcs 

12 1 pc 

 

The volumes of all inclusions were calculated 

and totaled 4465 nm3. This represents 10% of the 

total volume. The 353535 nm cube was analyzed 

as a micro model. The carbon black numerical mod-

el ultimately consisted of the inclusions, shown in 

figure 4. 

 

Fig. 4. The geometry of the hyperelastic matrix with the carbon 

black inclusions. 

The carbon black model was discretized using 

finite elements, as shown in figure 5. Detailed in-

formation about finite elements is given in table 2. 

a)  

b)  

Fig. 5. A FEM model: a) micromodel; b) CB inclusions. 
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Table 2. Data used for material description in numerical modeling. 

Mesh 

vertices 

Tetrahedral 

elements 

Triangular 

elements 

Edge 

elements 

8578 48198 6260 1407 

Vertex 

elements 

Number of 

elements 

Shape func-

tion 
 

218 48198 Quadratic  

 

The Mooney-Rivlin 9 parameter material was 

used at matrix micro model and homogenized mod-

el. The value of the fitness function of the parent 

algorithm is specified in equation (5). The maximum 

number of executions of an evolutionary algorithm 

was 50. Parameters of the algorithm were as follows: 

probability of even mutation 0.1, probability of 

Gaussian mutation 0.8, probability of simple cross-

ing 0.8, probability of arithmetic crossing 0.2, num-

ber of individuals in subpopulations 16, number of 

subpopulations 2. The matrix hyperelastic Mooney-

Rivlin 9-parameters material model are shown in 

table 3. Elastic material properties for the carbon 

black model are presented in table 4. 

Table 3. Material parameters of M-R 9-parameters for matrix in 

micro model [MPa] (Gorash et al., 2015), E0 - initial bulk modulus. 

C10  C01  C20  C02  C11  

0.172 9.5210-3 -1.9510-3 -1.2410-4 3.4410-4 

C30  C03  C21  C12  E0, Pa 

4.6610-5 -1.2810-7 5.2910-8 3.5610-6 3.60106 

Table 4. Material parameters of carbon black (Xu et al., 2012). 

Young’s modulus, 

MPa 
Poisson’s ratio Density, g/cm3 

2 500 0.3 1.8 

 

The micromodel was computed for load cases 

presented in figure 3. An exemplary distribution of 

displacements for stretching in the "z" direction is 

shown in figure 6. The maximum displacement val-

ue for the case of stretching along the Z axis was 35 

nm. The numerical homogenized model of the cube 

contains low number of elements and is shown in 

figure 7. Detailed information about model with 

homogenized material mesh can be found in table 5. 

Table 5. Detailed information on finite elements for homogenized 

cube. 

Mesh verti-

ces 

Hexahedral 

elements 

Quadrilat-

eral ele-

ments 

Edge ele-

ments 

343 216 216 72 

Vertex 

elements 

Number of 

elements 

Shape func-

tion 
 

8 216 Quadratic  

 

a)  

b)  

Fig. 6. Exemplary distribution of displacement: a) the whole 
model; b) section. 

 

Fig. 7. A finite element model for homogenized material. 

Table 5. Detailed information on finite elements for homogenized 

cube. 

Mesh verti-

ces 

Hexahedral 

elements 

Quadrilat-

eral ele-

ments 

Edge ele-

ments 

343 216 216 72 

Vertex 

elements 

Number of 

elements 

Shape func-

tion 
 

8 216 Quadratic  

 

To determine homogenized material properties 

defined as a design parameter, the limits to the de-

sign variables are applied as shown in table 6. 

The evolutionary algorithm was executed several 

times and the change of the value of the objective 

function for the subsequent generations for the best 

case on a logarithmic scale is shown in figure 8. It is 

to minimize the difference between the RVE model 

and the homogeneous one, which is represented by 

formula (11).  
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Table 6. Material parameters of M-R 9-parameters for matrix in micro model [MPa] (Gorash et al., 2015), E0 - initial bulk modulus.. 

C10  C01  C20  C02  C11  

[-0.5; 0.6] [-0.2; 0.6] [-510-3; 610-3] [-510-4; 610-4] [-510-4; 610-4] 

C30  C03  C21  C12  E0, Pa 

[-810-5; 910-5] [-510-5; 610-5] [-510-5; 610-5] [-510-5; 610-5] [3106; 1.5107] 

 

Fig. 8. Objective function value in each generation of evolutionary algorithm. 

The objective function f(x) for the best evolu-

tionary algorithm solution is equal to 21.38, while 

the material properties defined by genes are present-

ed in table 7. 

Table 7. The best-found values of material properties [MPa]. 

C10  C01  C20  C02  C11  

0.192 0.0406 -1.8710-3 5.2710-4 -5.2210-6 

C30  C03  C21  C12  E0, Pa 

5.5710-5 1.7410-5 -4.8610-5 4.2310-5 5.30106 

 

A distribution of displacements for one of the 

load cases, the extension in the "z" direction for mi-

cro and homogenized model are shown in figure 9. 

The maximum displacement value for the case of 

stretching along the Z axis was 35 nm. 

Graph of dependence of stress – strain depend-

ing on the case is shown in figures 10, 11 and 12. 

The curve for the detailed carbon black model coin-

cides with the curve with substitute values of mate-

rial constants. 

 

a) b)  

Fig. 9. Distribution of displacement for homogenized model for extension in "z" direction: a) the whole model; b) cross sections 
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Fig. 10. Graph of dependence of the stress - strain for the stretching case. 

 

Fig. 11. Graph of dependence of the stress – strain for the compression case. 

 

Fig. 12. Graph of dependence of the stress - strain for the shearing case. 
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The influence of finite element mesh size on the 

quality of obtained results was checked for the mod-

el after homogenization. The article analyzes the 

homogenized model with 216 finite elements and it 

was compared to 2744 finite elements. The average 

relative errors (ARE) of reaction forces are shown in 

the table 8. 

Table 8. The average relative error depends on the number of finite 

elements. 

Average relative 

error between the 

reaction forces of 

216 and 2744 

finite elements 

Extension Compression Shear 

0.028% 0.192% 0.118% 

 

The homogenized material properties, were used 

to numerically calculate the trunk door seal when the 

car door was closed. The seal type D was assumed 

with the dimensions shown in Figure 13. The numer-

ical calculations included a seal section with a length 

of 40 mm. The properties of the finite element mesh 

are shown in table 9.  

 

Fig. 13. Geometry of trunk door seal. 

Table 9. Detailed information on finite elements. 

Mesh 

vertices 

Hexahedral 

elements 

Quadrilateral 

elements 

Edge 

elements 

32118 25000 14700 1084 

Vertex 

elements 

Number of 

elements 

Shape func-

tion 

 

16 25000 Quadratic  

 

The FEM model of the trunk door seal model is 

shown in figure 14. The boundary conditions of the 

numerical model are shown in figure 15. 

 

Fig. 14. The FEM model of the trunk door seal 

a)  

b)  

Fig. 15. The boundary condition: a) all DOFs fixed; b) the 

force. 

The Mises stress distribution and total displace-

ment are shown in Figure 16 and 17 respectively.  

b)  

Fig. 16. The distribution of von Mises stress, MPa. 
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b)  

Fig. 17. The distribution of total displacement, mm. 

4. DISCUSSION 

The decoupled homogenization method applied 

to the analysis of the trunk door seal allows analysis 

to be done taking into account very small (compared 

to the macro model size) inclusions. The numerical 

material tests in micro scale are the part of the algo-

rithm that in many cases consumes the most of the 

computing. The evolutionary algorithm used in ho-

mogenization procedure allows one to obtain solu-

tion of multimodal optimization problem. The pre-

sented decoupled method can be used in many ap-

plications of hyperelastic materials and the numeri-

cal example described confirmed the possibility to 

perform computation in macro scale that takes into 

account nanoscale size of inclusions, without the 

need of preparing material samples and performing 

experimental tests. It is convenient if the composite 

is in a design phase and the material is not yet al-

lowable for experimental testing.  
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NIESPRZĘŻONA HOMOGENIZACJA 

KOMPOZYTU HIPERSPRĘŻYSTEGO Z 

WTRĄCENIAMI SADZY 

Streszczenie 

Celem pracy było zastosowanie metody homogenizacji nie-

sprzężonej do modelowania hipersprężystego kompozytu z 

wtrąceniami. Metodę przedstawioną w pracy ilustruje analiza 

numeryczna uszczelki drzwi. Metodę homogenizacji niesprzę-

żonej zastosowano w celu określenia makroskopowych właści-

wości materiału hipersprężystego. Metoda pozwala wyznaczyć 

równoważne właściwości materiału kompozytowego na podsta-

wie jego struktury i wyników eksperymentów numerycznych 

prowadzonych w skali mikro. W przeciwieństwie do metody 

sprzężonej wyniki nie są przenoszone w każdej iteracji między 

skalami, co prowadzi do obniżenia kosztów obliczeń. Analizo-

wany mikro model składał się z osnowy z materiału hipersprę-

żystego oraz sztywnych wtrąceń sadzy. Metoda niesprzężona 

wykorzystuje algorytm ewolucyjny, aby uzyskać właściwości 

materiału makro. Do analiz numerycznych użyto metody ele-

mentów skończonych. 
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