PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of factors affecting the intrinsic vulnerability of groundwater rated by the mean residence time estimation method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We analyse the factors used for assessing groundwater intrinsic vulnerability to pollution in the mean residence time estimation method, providing a final vulnerability evaluation. The following factors were analysed: depth to shallow groundwater, effective precipitation infiltration coefficient, terrain inclination, volumetric water content of soils and rocks in the unsaturated zone and volumetric water content of the topsoil. GIS surveys were performed for two geomorphologically diverse regions: a highland piedmont and a lowland plain in Poland (Central Europe). In both cases, groundwater had spatially diverse vulnerability to contamination. The research method used relied on determining the percentage participation of the area with particular values of the parameters analysed in areas of different degrees of vulnerability. Knowledge of the extent and distribution of variability of the parameters analysed in areas of particular degrees of vulnerability helps explain the causes of spatial variation in groundwater intrinsic vulnerability to contamination in given areas.
Rocznik
Strony
126--138
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Bachmat, Y., Collin, M., 1987. Mapping to assess groundwater vulnerability to pollution. In: Vulnerability of Soil and Groundwater to Pollutants (eds. W. van Duijvenbooden and H.G. van Waegeningh), TNO Committee on Hydrological Research, Hague, Proceedings and Information, 38: 297-307.
  • 2. Bonfanti, M., Ducci, D., Masetti, M., Sellerino, M., Stevenazzi, S., 2016. Using statistical analyses for improving rating methods for groundwater vulnerability in contamination maps. Environmental Earth Sciences, 75: 1003.
  • 3. Civita, M.V., 2010. The combined approach when assessing and mapping groundwater vulnerability to contamination. Journal of Water Resource and Protection, 2: 14-28.
  • 4. Daly, D., Dassargues, A., Drew, D., Dunne, S., Goldscheider, N., Neale, S., Popescu, I.C., Zwhalen, F., 2002. Main concepts of the “European approach” to karst-groundwater-vulnerability assessment and mapping. Hydrogeology Journal, 10: 340-345.
  • 5. Doerfliger, N., Jeannin, P.-Y., Zwahlen, F., 1999. Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environmental Geology, 39: 165-176.
  • 6. Evett, S., Cepuder, P., Heng, L.K., Hignett, C., Laurent, J.P., Ruelle, P., 2008. Field estimation of soil water content: a practical guide to methods, instrumentation and sensor technology. Training Course Series 30, International Atomic Energy Agency, Vienna.
  • 7. Foster, S., Hirata, R., Gomes, D., D'Elia, M., Paris, M., 2002. Groundwater quality protection: a guide for water utilities, municipal authorities and environment agencies. The World Bank, Washington, DC.
  • 8. Gemitzi, A., Petalas, Ch., Tsihrintzis, V.A., Pisinaras, V., 2006. Assessment of groundwater vulnerability to pollution: a combination of GIS, fuzzy logic and decision making techniques. Environmental Geology, 49: 653-673.
  • 9. Gumuła-Kawęcka, A., Szymkiewicz, A., Jaworska-Szulc, B., Pruszkowska-Caceres, M., Gorczewska-Langner, W., 2018. Preliminary estimation of groundwater recharge on Brda river outwash plain. 10th Conterence EKO-DOK 2018, E3S Web of Conferences, 44: 00050.
  • 10. Hagedorn, B., Clarke, N., Ruane, M., Faulkner, K., 2018. Assessing aquifer vulnerability from lumped parameter modeling of modern water proportions in groundwater mixtures: application to California's South Coast Range. Science of the Total Environment, 15: 1550-1560.
  • 11. He, H., Li X.-G., Li, X., Cui, J., Zhang, W., Xu, W., 2018. Optimizing the DRASTIC method for nitrate pollution in groundwater vulnerability assessments: a case study in China. Polish Journal of Environmental Studies, 27: 95-107.
  • 12. Hennings, V., 2000. Methodendokumentation Bodenkunde: Auswertungsmethoden zur Beurteilung der Empfindlichkeit und Belastbarkeit von Böden. Geologisches Jahrbuch, Reihe G, Heft SG 1. Schweizerbartsche Verlagsbuchhandlung, Stuttgart.
  • 13. Hermanowski, P., Ignaszak, T., 2017. Groundwater vulnerability based on four different assessment methods and their quantitative comparison in a typical North European Lowland river catchment (the Pliszka River catchment, western Poland). Geological Quarterly, 61 (1): 166-176.
  • 14. Hernández-Espriú, A., Reyna-Gutiérrez, A., Sánchez-León, E., Cabral-Cano, E., Carrera-Hernández, J., Martínez-Santos, P., Macías-Medrano, S., Falorni, G., Colombo, D., 2014. The DRASTIC-Sg model: an extension to the DRASTIC approach for mapping ground water vulnerability in aquifers subject to differential land subsidence, with application to Mexico City. Hydrogeology Journal, 22: 1469-1485.
  • 15. Herrmann, F., Berthold, G., Fritsche, J.G., Kunkel, R., Voigt, H.J., Wendland, F., 2012. Development of a conceptual hydrogeological model for the evaluation of residence times of water in soil and groundwater: the state of Hesse case study, Germany. Environmental Earth Sciences, 8: 2239-2250.
  • 16. Jiménez-Madrid, A., Carrasco, F., Martinez, C., Gogu, R.C., 2013. DRISTPI, a new groundwater vulnerability mapping method for use in karstic and non-karstic aquifers. Quarterly Journal of Engineering Geology and Hydrogeology, 46: 245-255.
  • 17. Kazakis, N., Voudouris, K.S., 2015. Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: modifying the DRASTIC method using quantitative parameters. Journal of Hydrology, 525: 13-25.
  • 18. Khemiri, S., Khnissi, A., Ben Alaya, M., Saidi, S., Zargouni, F., 2013. Using GIS for the comparison of intrinsic parametric methods assessment of groundwater vulnerability to pollution in scenarios of semi arid climate. The case of Foussana groundwater in the central of Tunisia. Journal of Water Resource and Protection, 5: 835-845.
  • 19. Krogulec, E., 2006. Methods and results of groundwater vulnerability evaluation to contamination in the Kampinoski National Park, central Poland. Acta Geologica Polonica, 56: 349-359.
  • 20. Krogulec, E., Trzeciak, J., 2016. DRASTIC assessment of groundwater vulnerability to pollution in the Vistula floodplain in central Poland. Hydrology Research, 48: 1088-1099.
  • 21. Maxe, L., Johansson, P.-O., 1998. Assessing groundwater vulnerability using travel time and specific surface area as indicators. Hydrogeology Journal, 6: 441-449.
  • 22. Neukum, C., Azzam, R., 2009. Quantitative assessment of intrinsic groundwater vulnerability to contamination using numerical simulations. Science of the Total Environment, 408: 245-254.
  • 23. Newman, B.D., Osenbruck, K., Aeschbach-Hertig, W., Solomon, D.K., Cook, P., Rozanski, K., Kipfer, R., 2010. Dating of “young” groundwater using environmental tracers: advantages, applications, and research needs. Isotopes in Environmental and Health Studies, 46: 259-278.
  • 24. Pisinaras, V., Polychronis, Ch., Gemitzi, A., 2016. Intrinsic groundwater vulnerability determination at the aquifer scale: a methodology coupling travel time estimation and rating methods. Environmental Earth Sciences, 75: 85.
  • 25. Potrykus, D., Gumuła-Kawęcka, A., Jaworska-Szulc, B., Pruszkowska-Caceres, M., Szymkiewicz, A., 2018. Assessing groundwater vulnerability to pollution in the Puck region (denudation moraine upland) using vertical seepage method. 10th Conference EKO-DOK 2018, E3S Web of Conferences, 44: 00147.
  • 26. Ravbar, N., Goldscheider, N., 2009. Comparative application of four methods of groundwater vulnerability mapping in a Slovene karst catchment. Hydrogeology Journal, 17: 725-733.
  • 27. Różkowski, J., 2007. Evaluation of intrinsic vulnerability of an Upper Jurassic karst-fissured aquifer in the Jura Krakowska (southern Poland) to anthropogenic pollution using the DRASTIC method. Geological Quarterly, 51 (1): 17-26.
  • 28. Rühle, E., Sokołowski, S., Tyska, M., 1954. Mapa geologiczna Polski 1:1 000 000. Instytut Geologiczny, Warszawa.
  • 29. Saidi, S., Bouri, S., Ben Dhia, H., Anselme, B., 2011. Assessment of groundwater risk using intrinsic vulnerability and hazard mapping: application to Souassi aquifer, Tunisian Sahel. Agricultural Water Management, 98: 1671-1682.
  • 30. Saidi, S., Hosni, S., Mannai, H., Jelassi, F., Bouri, S., Anselme, B., 2017. GIS-based multi-criteria analysis and vulnerability method for the potential groundwater recharge delineation, case study of Manouba phreatic aquifer, NE Tunisia. Environmental Earth Sciences, 76: 511.
  • 31. Staśko, S., Tarka, R., Olichwer, T., 2012. Groundwater recharge evaluation based on the infiltration method. International Association of Hydrogeologists, Selected Papers, 17: 189-197.
  • 32. Tarka, R., Olichwer, T., Staśko, S., 2017. Evaluation of groundwater recharge in Poland using the infiltration coefficient method. Geological Quarterly, 61 (2): 384-395.
  • 33. Vias, J.M., Andreo, B., Perles, M.J., Carrasco, F., Vadillo, I., Jimenez, P., 2006. Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Application in two pilot sites in Southern Spain. Hydrogeology Journal, 14: 912-925.
  • 34. Wachniew, P., 2015. Environmental tracers as a tool in groundwater vulnerability assessment. Acque Sotterranee - Italian Journal of Groundwater, AS 13059: 19-25.
  • 35. Wachniew, P., Zurek, A.J., Stumpp, Ch., Gemitzi, A., Gargini, A., Filippini, M., Rozanski, K., Meeks, J., Kværner, J., Witczak, S., 2016. Towards operational methods for the assessment of intrinsic groundwater vulnerability: a review. Critical Reviews in Environmental Science and Technology, 46: 827-884.
  • 36. Witczak, S., Duda, R., Żurek, A., 2007. The Polish concept of groundwater vulnerability mapping. International Association of Hydrogeologists, Selected Papers on Hydrogeology, 11: 45-59.
  • 37. Witczak, S., Duda, R., Żurek, A., Górski, J., Dragon, K. et al., 2011. Groundwater vulnerability map of Poland, 1:500 000 (in Polish with English translation). Ministry of Environment, Warszawa. Pub. by AGH University of Science and Technology, Krakow. https://www.mos.gov.pl/fileadmin/user_upIoad/mos/ srodowisko/geologia/publikacje/hydrogeologia/Mapa_wrazliwosci_wod_podz_na_zaniecz-Podatnosc_Ipoziomwod.pdf.
  • 38. Witkowski, A.J., Rubin, K., Kowalczyk, A., Różkowski, A., Wróbel, J., 2003. Groundwater vulnerability map of the Chrzanów karst-fissured Triassic aquifer (Poland). Environmental Geology, 44: 59-67.
  • 39. Yu, C., Zhang, B.X., Yao, Y.Y., Meng, F.H., Zheng, C.M., 2012. A field demonstration of the entropy-weighted fuzzy DRASTIC method for groundwater vulnerability assessment. Hydrological Sciences Journal, 57: 1420-1432.
  • 40. Yu, C., Yao, Y., Cao, G., Zheng, Ch., 2014. A field demonstration of groundwater vulnerability assessment using transport modeling and groundwater age modeling, Beijing Plain, China. Environmental Earth Sciences, 73: 5245-5253.
  • 41. Zuber, A., Witczak, S., Różański, K., Śliwka, I., Opoka, M., Mochalski, P., Kuc, T., Karlikowska, J., Kania, J., Korczyński-Jackowicz, M., Duliński, M., 2005. Groundwater dating with 3H and SF6 in relation to mixing patterns, transport modelling and hydrochemistry. Hydrological Processes, 19: 2247-2275.
  • 42. Zuber, A., Różański, K., Kania, J., Purtschert, R., 2011. On some methodological problems in the use of environmental tracers to estimate hydrogeologic parameters and to calibrate flow and transport models. Hydrogeology Journal, 19: 53-69.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2319f460-6a5b-4592-b70a-daff7be02ad4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.