PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Guidelines to select suitable parameters for contour method stress measurements

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The contour method is one of the promising techniques for the measurement of residual stresses in engineering components. In this method, the cut surfaces deform, owing to the relaxation of residual stresses. The deformations of the two cut surfaces are then measured and used to back calculate the 2-dimensional map of original residual stresses normal to the plane of the cut. Thus, it involves four main steps; specimen cutting, surface contour measurement, data analysis and finite element simulation. These steps should perform in a manner that they do not change the underlying features of surface deformation especially where the residual stress distribution varies over short distances. Therefore, to carefully implement these steps, it is important to select appropriate parameters such as surface deformation measurement spacing, data smoothing parameters (‘knot spacing’ for example cubic spline smoothing) and finite element mesh size. This research covers an investigation of these important parameters. A simple approach for choosing initial parameters is developed based on an idealised cosine displacement function (giving a self-equilibrated one-dimensional residual stress profile). In this research, guidelines are proposed to help the measurer to select the most suitable choice of these parameters based on the estimated wavelength of the residual stress field.
Rocznik
Strony
39--58
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
  • Faculty of Technology, University of Sunderland, Sunderland, SR6 0DD, UK and The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
Bibliografia
  • 1. M.B. Prime, Cross-sectional mapping of residual stresses by measuring the surface contour after a cut, Journal of Engineering Materials and Technology, 123, 2, 162–168, 2000, doi: 10.1115/1.1345526.
  • 2. M. Prime, A.T. DeWald, The Contour Method, in Practical Residual Stress Measurement Methods, John Wiley & Sons, Ltd, New Jersey, pp. 109–138, 2013.
  • 3. M. Prime, M. Hill, A. DeWald, R. Sebring, V. Dave, M. Cola, Residual stress mapping in welds using the contour method, 6th International Conference, Pine Mountain, Georgia, 15, 891–896, 2002.
  • 4. Y. Traore, S. Paddea, P.J. Bouchard, M.A. Gharghouri, Measurement of the residual stress tensor in a compact tension weld specimen, Experimental Mechanics, 53, 4, 605–618, 2013.
  • 5. F. Hosseinzadeh, M.B. Toparli, P.J. Bouchard, Slitting and contour method residual stress measurements in an edge welded beam, Journal of Pressure Vessel Technology, 134, 1, 011402–011406, 2012.
  • 6. A.T. DeWald, M.R. Hill, Eigenstrain-based model for prediction of laser peening residual stresses in arbitrary three-dimensional bodies Part 1: Model description, Journal of Strain Analysis for Engineering Design, 44, 1, 1–11, 2009, doi: 10.1243/03093247JSA417.
  • 7. A. Evans, G. Johnson, A. King, P.J. Withers, Characterization of laser peening residual stresses in Al 7075 by synchrotron diffraction and the contour method, Journal of Neutron Research, 15, 2, 47–154, 2007, doi: 10.1080/10238160701372653.
  • 8. Y. Zhang, S. Ganguly, V. Stelmukh, M.E. Fitzpatrick, L. Edwards, Validation of the Contour method of residual stress measurement in a mig 2024 weld by neutron and synchrotron X-ray diffraction, Journal of Neutron Research, 11, 4, 181–185, 2003, doi: 10.1080/10238160410001726594.
  • 9. V. Richter-Trummer, S.M. Tavares, P.M. Moreira, M.A. de Figueiredo, P.M. de Castro, Residual stress measurement using the contour and the sectioning methods in a MIG weld: effects on the stress intensity factor, Journal of Materials Science and Technology, 20, 1–2, 114–119, 2008.
  • 10. M.B. Prime, T. Gnäupel-Herold, J.A. Baumann, R.J. Lederich, D.M. Bowden, R.J. Sebring, Residual stress measurements in a thick, dissimilar aluminum alloy friction stir weld, Acta Materialia, 54, 15, 4013–4021, 2006, doi: 10.1016/j.actamat.2006.04.034.
  • 11. P. Frankel, M. Preuss, A. Steuwer, P.J. Withers, S. Bray, Comparison of residual stresses in Ti–6Al–4V and Ti–6Al–2Sn–4Zr–2Mo linear friction welds, Journal of Materials Science and Technology, 25, 5, 640–650, 2009.
  • 12. M. Turski, L. Edwards, Residual stress measurement of a 316L stainless steel bead-onplate specimen utilising the contour method, International Journal of Pressure Vessels and Piping, 86, 1, 126–131, 2009.
  • 13. L. Hacini, N.V. Lê, P. Bocher, Evaluation of residual stresses induced by robotized hammer peening by the contour method, Experimental Mechanics, 49, 6, 775–783, 2008, doi: 10.1007/s11340-008-9205-6.
  • 14. A.T. DeWald, J.E. Rankin, M.R. Hill, M.J. Lee, H.-L. Chen, Assessment of tensile residual stress mitigation in Alloy 22 welds due to laser peening, Journal of Engineering Materials and Technology, 126, 4, 465–473, 2004.
  • 15. O. Hatamleh, J. Lyons, R. Forman, Laser peening and shot peening effects on fatigue life and surface roughness of friction stir welded 7075-T7351 aluminum, Fatigue and Fracture of Engineering Materials and Structures, 30, 2, 115–130, 2007.
  • 16. O. Hatamleh, Effects of peening on mechanical properties in friction stir welded 2195 aluminum alloy joints, Materials Science and Engineering A, 492, 1, 168–176, 2008.
  • 17. Y. Zhang, M.E. Fitzpatrick, L. Edwards, Measurement of the residual stresses around a cold expanded hole in an EN8 steel plate using the contour method, Materials Science Forum, 404, 527–534, 2002.
  • 18. M.B. Prime, M.A. Newborn, J.A. Balog, Quenching and cold-work residual stresses in aluminum hand forgings: contour method measurement and FEM prediction, Materials Science Forum, 426–432, 435–440, 2003, doi: 10.4028/www.scientific.net/MSF.426-432.435.
  • 19. F. Hosseinzadeh, J. Kowal, P.J. Bouchard, Towards good practice guidelines for the contour method of residual stress measurement, Journal of Engineering, 10.1049/joe.2014.0134, 2014.
  • 20. M.B. Prime, A.L. Kastengren, The contour method cutting assumption: error minimization and correction, [in:] Experimental and Applied Mechanics, vol. 6, pp. 233–250, Springer, Berlin, 2011.
  • 21. M. Kunieda, B. Lauwers, K.P. Rajurkar, B.M. Schumacher, Advancing EDM through fundamental insight into the process, CIRP Annals – Manufacturing Technology, 54, 2, 64–87, 2005, doi: 10.1016/S0007-8506(07) 60020-1.
  • 22. T.A. Spedding, Z.Q. Wang, Parametric optimization and surface characterization of wire electrical discharge machining process, Precision Engineering, 20, 1, 5–15, 1997, doi: 10.1016/S0141-6359(97)00003-2.
  • 23. K.H. Ho, S.T. Newman, State of the art electrical discharge machining (EDM), International Journal of Machine Tools and Manufacture, 43, 13, 1287–1300, 2003, doi: 10.1016/S0890-6955(03)00162-7.
  • 24. S. Ali, Probing system characteristics in coordinate metrology, Measurement Science Review, 10, 4, 120–129, 2010.
  • 25. R.J. Hocken, P.H. Pereira, Coordinate Measuring Machines and Systems, 2nd ed., CRC Press, Boca Raton, 2011.
  • 26. D. Flack, CMM probing-issue 2, National Measurement Good Practice Guide, No 43, National Physical Laboratory, Hampton Road, Teddington, Middlesex, 2014.
  • 27. F. Hosseinzadeh, Surface profile measurement for the contour method, The Open University, OU/MatsEng/019, Issue 1, 2019.
  • 28. M.B. Prime, R.J. Sebring, J.M. Edwards, D.J. Hughes, P.J. Webster, Laser surface-contouring and spline data-smoothing for residual stress measurement, Experimental Mechanics, 44, 2, 176–184, 2004, doi: 10.1007/BF02428177.
  • 29. M.B. Prime, T. Gnäupel-Herold, J.A. Baumann, R.J. Lederich, D.M. Bowden, R.J. Sebring, Residual stress measurements in a thick, dissimilar aluminum alloy friction stir weld, Acta Materialia, 54, 15, 4013–4021, 2006.
  • 30. D.W. Brown et al., Critical comparison of two independent measurements of residual stress in an electron-beam welded uranium cylinder: neutron diffraction and the contour method, Acta Materialia, 59, 3, 864–873, 2011.
  • 31. P.J. Bouchard, M. Turski, M.C. Smith, Residual stress concentrations in a stainless steel slot-weld measured by the contour method and neutron diffraction, American Society of Mechanical Engineers, pp. 335–345, 2009, doi: 10.1115/PVP2009-77234.
  • 32. M. Kartal et al., Residual stress measurements in single and multi-pass groove weld specimens using neutron diffraction and the contour method, Materials Science Forum, 524, 671–676, 2006.
  • 33. M. B. Prime, D. J. Hughes, P.J. Webster, Weld application of a new method for cross-sectional residual stress mapping, 2001 SEM Annual Conference on Experimental and Applied Mechanics, Portland, OR, pp. 608–611, 2001.
  • 34. R.D. Cook, D.S. Malkus, M.E. Plesha, R.J. Witt, Concepts and Applications of Finite Element Analysis, 4th ed., John Wiley & Sons, New York, 2001.
  • 35. P.J. Bouchard, P.J. Budden, P.J. Withers, Fourier basis for the engineering assessment of cracks in residual stress fields, Engineering Fracture Mechanics, 91, 37–50, 2012, doi: 10.1016/j.engfracmech.2012.05.004.
  • 36. N. Naveed, Improving the spatial resolution of the contour method, The Open University, 2016.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23165761-456c-4600-859d-a48016bf0173
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.