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The contour method is one of the promising techniques for the measure-
ment of residual stresses in engineering components. In this method, the cut surfaces
deform, owing to the relaxation of residual stresses. The deformations of the two
cut surfaces are then measured and used to back calculate the 2-dimensional map
of original residual stresses normal to the plane of the cut. Thus, it involves four
main steps; specimen cutting, surface contour measurement, data analysis and finite
element simulation. These steps should perform in a manner that they do not change
the underlying features of surface deformation especially where the residual stress dis-
tribution varies over short distances. Therefore, to carefully implement these steps, it
is important to select appropriate parameters such as surface deformation measure-
ment spacing, data smoothing parameters (‘knot spacing’ for example cubic spline
smoothing) and finite element mesh size. This research covers an investigation of
these important parameters. A simple approach for choosing initial parameters is de-
veloped based on an idealised cosine displacement function (giving a self-equilibrated
one-dimensional residual stress profile). In this research, guidelines are proposed to
help the measurer to select the most suitable choice of these parameters based on the
estimated wavelength of the residual stress field.
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1. Introduction

The contour method has emerged as a promising technique for the
measurement of residual stresses in engineering components. This method was
invented in 2000 by Mike Prime [1]. It is based on cutting the test component
of interest in two halves. The cut surfaces deform, owing to the relaxation of
residual stresses. The deformations of the two cut surfaces are then measured,
and used to back calculate the 2-dimensional map of original residual stresses
normal to the plane of the cut [2]. The contour method is capable of measur-
ing through-thickness residual stresses. The contour method is relatively simple,
inexpensive, and utilizes readily available equipment in workshops [3]. It has
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been successfully validated by commonly used residual stress measurement tech-
niques, such as neutron diffraction [4], slitting [5, 6], synchrotron x-ray diffraction
[7, 8] and sectioning [9]. The method is useful to obtain detailed information of
residual stresses introduced by various manufacturing processes such as welding
[3, 10–12], hammer peening [13], laser peening [14–16], cold expanded hole [17]
and aluminium alloy forging [18]. Nevertheless, like the other residual stress mea-
suring techniques, the contour method also suffers from factors that impact on
the accuracy and the spatial resolution of the method, and cause uncertainties
in the measured stresses. The reliability and accuracy of the contour method
measurement results can be improved by minimising errors and uncertainties
that can be introduced during data collection and data analysis procedures.
The steps in undertaking the contour method of residual stress measurement
are: specimen cutting, surface contour measurement, data analysis and Residual
stress back calculation (FE modelling).

Specimen cutting

Specimen cutting is the most crucial step of the contour method. Wire Elec-
tric Discharge Machining (WEDM) has previously been identified as the best
choice for the cutting step of the contour method [2, 19, 20]. WEDM cutting
is based on a thermo-electric process, and it is performed by generating a se-
ries of electrical sparks between the EDM wire (electrode), and the component
[21–23]. It can be applied to all electrically conductive materials, irrespective of
their hardness, material strength, shape and toughness. Also, WEDM is a non-
contact machining process; there is no direct contact between the electrode and
the work piece during cutting. Throughout the cutting process, the component
is submerged in a temperature controlled deionized water tank, in order to min-
imise thermal effects from the cutting process.

Surface contour measurement

After wire EDM cutting, the contours of the created cut surfaces are mea-
sured. Measuring the deviation from planarity of the cut surface, with appro-
priate surface deformation measurement spacing is important when using the
contour method to get residual stress measurement results with high accuracy.
A coordinate measuring machine (CMM) has the capability to register three
spatial coordinates (displacements) for any point on a cut surface. CMMs can
measure the cut surfaces using contact and non-contact devices, which include
touch trigger probes, continuous scanning probes and optical system. The most
common techniques for measuring the surface contours are reported in detail
in [19]. A CMM, with a fitted touch probe [24–26], is the most commonly used
instrument for taking surface contour measurements [1]. They are widely avail-
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able in many engineering workshops. The measurement of surface displacement
is used to quantify the residual stress values. Before conducting the CMM mea-
surements, the cut surface must be clean and dry, and free of any dirt, dust and
oil. Any dirt particles on the sample surface can affect the measurement data
and can cause error in the contour method stress results. Since the touch probe
sampling rate is about one measurement point per second the measurement pro-
cess can take several hours. Therefore, temperature stability is important, so the
contour cut surface is measured in a temperature controlled room and should be
isolated from thermal fluctuation [2, 27]. Also, the touch probe makes contact
with the measuring surface, and some local deformation occurs due to the low
but finite contact force. These limitations can be overcome by using an entirely
non-contact method such as laser sensors [28]. Due to faster acquisition of mea-
surement points using laser sensors, they are more suitable for measurement of
large engineering components. As such the thermal fluctuation, if there is any,
is less of an issue. They have a capability to measure the cut surface with better
resolution and high accuracy. However, laser sensors cannot exactly capture the
outline of the cut surface perimeter because the outline of the cut surface needs
to measure in the transverse direction to the cut surface measurements and it is
difficult to do with the laser scanners.

Data analysis

The next step is to process the cut surface deformation data. To process the
contour data, for the calculation of residual stresses using the contour method,
several data analysis steps are involved. These steps include [19, 28]; aligning the
contour data of the opposing cut surfaces, Interpolating the two data sets into
a common grid, extrapolating to the perimeter, averaging the two sets of data
points, smoothing the cleaned and averaged data, the following sections describe
these steps in more detail.

Aligning the data sets

The two cut surface deformation data sets are measured in two different coor-
dinate systems. These data sets must be aligned on the same coordinate system,
so that all the points in both data sets are coincident with each other, in the same
manner as the material points were in the single component prior to the cutting.
The mating cut surfaces appear as mirror images of each other. In this situation,
one of the x-z coordinate directions needs translation and rotation, so that both
cut surfaces exactly overlay each other and the corresponding data points on
each mating surface can be aligned. This data set alignment is facilitated by
measuring the perimeter of both cut parts. Note that deformation measurement
points are y coordinates and the points on the surface are on x-z plane.
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Interpolating in a common grid

For several reasons, the data points of both cut surfaces cannot always be
overlaid exactly on top of each other. Reasons include; alignment of the cut
surfaces and the defined local coordinates. So, in this case, it is necessary to
linearly interpolate the data sets of each cut surface onto a common grid, with
the same approximate density, as the original measured data points [19, 28].

Extrapolating to the perimeter

The surface contour measurement method (CMMs and laser sensors) can-
not exactly capture the displacement approaching the outline of the cut sur-
face perimeter. Therefore, extrapolation is required to replace any missing data
points, usually situated around the perimeter of the cut surface. This extrapola-
tion is necessary because displacements must be applied to all the nodes on the
cut surface in the FE model [19, 28]. Often reconstructed near surface residual
stresses are unreliable and may not be reported.

Averaging of the two data sets

Once the measured surface data sets are aligned and on the same grid, they
should be averaged point by point on the x-z grid to provide a single set of
deformation data. This step is one of the most significant steps in the data
processing because it can eliminate several potential sources of error, such as
the effects of shear stresses and asymmetric cutting artefacts resulting from the
cutting process [2, 19, 20].

Data smoothing

The averaged and cleaned displacement data set must be smoothed before
using as boundary conditions in an FE model for elastic stress analysis. Data
smoothing is required, because any variations within the contour cut surface
data, resulting from the roughness on the WEDM cut surface, a cutting fault
such as WEDM wire breakage, or an error in the surface contour measurement
process, such as the CMM probe slipping at the edges of the cut surface, can be
amplified in the stress results. If the overall form of the surface is to be preserved,
it is essential to eliminate these irregularities. They can cause significant errors
in the calculated stress values because for the contour method, stress calculation
is dependent on surface displacement profiles [2, 19, 28].

Surface data can be smoothed using different methods. Examples include bi-
variate spline smoothing, Fourier series and polynomial smoothing. The Fourier
series method cannot always capture all the important features of the cut sur-
faces [28]. The most commonly used smoothing technique when using the contour
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method is bivariate spline fitting, or two dimensional (2D) cubic splines [28]. This
technique, commonly used in previous contour measurement studies has led to
the publication of very reliable results [29–31]. When using 2D cubic splines,
piecewise polynomials are joined at given locations called ‘knots’ which define
the domain of each polynomial. The smoothing process is achieved by minimis-
ing the uncertainty in the calculated stress results, or error in the data point
and the fit. The amount of smoothing and the density of knot spacing can affect
the resulting stresses. For too small a knot spacing, the roughness of the cut
surface can be incorporated into the final smooth surface contour data, and for
too large a knot spacing, the final smooth surface contour data would not cap-
ture all underlying surface deformation features. In both cases, the uncertainty
in the calculated stresses would be increased. Hence, determining the optimum
knot spacing, in order to obtain the best fit of the measured data, is essential to
minimise uncertainty in the stress results.

Different approaches can be applied to determine the optimum smoothing
parameter or ‘knot spacing’. Commonly, it can be achieved by fitting the mea-
sured displacement data to cubic splines with a variety of knot spacings. The
suitability of the knot spacing is evaluated by comparing the spline fits to the
raw data (averaged from both cut surfaces) [12, 31, 32]. Another approach to
determine the optimum knot spacing, involves incrementally increasing the knot
spacing, fitting the data for each knot spacing and then performing a finite ele-
ment analysis for each increment to determine the stresses. The uncertainty in
the calculated stresses at a given node is estimated by taking the standard devi-
ation of the new stress and the stress from the previous course fit. The standard
deviation can be calculated from Eq (1.1).

(1.1) ∂σ(i, j) =
1√
2
|σ(i, j) − σ(i, j − 1)|.

Where, σ(i, j) represents the stress at node i for the smoothing spline solution j,
and j − 1 refers to the previous, course smoothing spline solution. An averaged
uncertainty in the calculated stresses can then be calculated. The optimum knot
spacing always relates to the lowest average stress uncertainty using the root-
mean-square (RMS) of all the nodal uncertainties from Eq. (1.2) [28]

(1.2) (avg)∂σ(j) =
1√
2

√∑n
i=1[∂σ(i, j)]2.

Residual stress back calculation (FE modelling)

For the contour method stress calculation, linear elastic finite element (FE)
analysis is performed using a standard FE code such as ABAQUS. The contour
cut has to be symmetric therefore only one of the cut halves is used to create
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a three dimensional finite element model. The model is created by using the mea-
sured perimeter of the cut part. Ideally the cut surface should be modelled with
a deformed face and then forced back to a flat surface. However in practice, the
measured deformations resulting from stress relaxation are very small in compar-
ison to the size of the components being measured. Therefore, for convenience,
the cut surface is modelled as having a flat (undeformed) cut face. The FE model
of the specimen is meshed and the elastic material properties of the specimen
are defined. The contour method is based on an elastic superposition principle.
The material behaviour is assumed to have isotropic linearly elastic properties,
defined by the values of Young modulus and Poisson’s ratio. Conventionally, the
finite element model is meshed using brick elements, with either linear shape
function hexahedral 8-node elements, or quadratic shape function hexahedral
20-node elements. The next step is to apply the smoothed data, in the form of
displacement boundary conditions, on the FE nodes of the model, with reverse
sign (i.e. the displacement contour is applied in the opposite direction). Then,
additional boundary conditions are applied to FE model to prevent rigid body
motion (see Fig. 1) [33]. Finally, residual stresses are obtained by performing
a linear elastic finite element analysis.

Fig. 1. A deformed 3-dimensional linear FE model showing additional constraint to prevent
rigid body motion [33].

In summary, for residual stress measurement using the contour method, de-
formation data defining the “contour” of the cut surface profile is applied to
a finite element (FE) model of the cut component, and a linear elastic mechan-
ical FE analysis is carried out to determine the residual stresses released by the
cut. The following data collection and analysis parameters are important in this
process:

• The deformation measurement spacing of the cut face.
• The data smoothing (for example the ‘knot spacing’ in cubic spline smoothing).
• The size and type of element employed in the FE stress analysis.
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A suitable choice of these parameters is essential, especially where the resid-
ual stress distribution varies over short distances. In this research the choice
of parameters is studied by considering an idealised surface deformation pro-
file and assessing how effectively the profile is captured using different sets of
linear and cubic spline knot spacing intervals. The quality of fit is calculated
from the error relative to the idealised profile. On the basis of this investiga-
tion, guidelines are provided to help contour method measurement practitioners
select a suitable surface measurement density, knot spacing to smooth the de-
formation data and FE mesh size for the contour method data collection and
analysis.

2. Idealised deformation profile

A cosine distribution of direct stress acting across a large plate is self-balanc-
ing and can therefore be taken to represent an idealised residual stress distribu-
tion. Consider a cosine displacement profile applied normal to the edge of a wide
plate having a wavelength w, and peak amplitude M . The stress distribution at
the surface is calculated for this case using a finite element (FE) stress analysis,
for example with w = 6.28 mm and M = 0.2 µm, using symmetric boundary
conditions and assuming plane strain conditions. The elastic material properties
(Young’s modulus, E = 210 GPa and Poisson’s ratio, ϑ = 0.3) are defined to
obtain the residual stress distribution. Figure 2 represents the FE model dimen-

Fig. 2. Finite element model, the boundary conditions and applied normal displacement
(M = 0.2 microns) along the edge of a semi-infinite plate.
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sions and boundary conditions. The FE stress results show that in the result of
applied cosine displacement profile, the stress profile along the edge has a similar
cosine form (see Fig. 3). The following empirical formula (see in Eq. (2.1)) can
be derived from the FE results.

(2.1) σ

(
x

w

)
= 3.45E

(
M

w

)
cos

(
2πx

w

)
.

The above study shows that an idealised one dimensional cosine surface de-
formation profile (see Fig. 43) defined by Eq. (2.2), can be used for simplified
data analysis investigations.

(2.2) y(x) = M cos(nφ),

where y(x) represents the surface deformation profile, M the maximum am-
plitude, and n is the order of the function and φ = 2πx/w, where w is the
wavelength of the surface profile distribution.

For a simple case where M and n have values of 1, the cosine distribution
y(x) has a period of 2π, giving

(2.3) y(x) = cos

(
2πx

w

)
.

Fig. 3. Predicted cosine form of self-equilibrated stress profile influence by a cosine
displacement profile.
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Fig. 4. Idealised cosine displacement profile as a function of x/w.

3. Piece-wise linear fit to cosine deformation profile

The accuracy of piece-wise linear fits to a cosine displacement profile over
different sets of spacings, a, ranging from a/w = 0.33 to 0.071 (i.e. a = w/3 to
w/14) are considered.

Figure 5 shows an example where five equally spaced sampling points are
used, that is a = w/4 for a cosine distribution. The plot also represents the
piece-wise linear fit to sample points. Note that for this case sampling points
start at x/w = 0.

The equation of a straight-line can give the piece-wise linear intermediate
y values between two consecutive sampling points of each fit. Equation (3.1)
represents the general equation for a straight-line.

(3.1) t(y − y1) = m(x− x1),

where

m =
(y2 − y1)

(x2 − x1)
,

x and y represent the coordinate and ordinate respectively of the intermediate
points between the two points (x1, y1) and (x2, y2), andm represents the gradient
of the line. Equation (3.1) is used to calculate the values of the y coordinate
along the piecewise linear fit. The deviations (errors) of each piecewise linear
fit to the idealised cosine displacement profile are then readily calculated. The
modulus of deviations for each fit are determined and used to calculate the overall
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Fig. 5. Piece-wise linear fit to sampling points spaced w/4 apart on a cosine displacement
profile.

maximum deviation error, the mean deviation error and the root mean square
(RMS) deviation error. The overall maximum deviation error is found directly
by considering the largest value of the maximum deviations. The mean deviation
error value is calculated by taking the mean of all the maximum deviation values
of each fit. The RMS deviation error is calculated using

(3.2) RMSE =

√∑N
i=1(yi − ŷi)2

N
,

where: yi is the y coordinate of the cosine profile at point i and ŷi is the y
coordinate of the piecewise linear fit at point i; yi − ŷi are the maximum values
of the deviations of each piecewise linear fit; N is the number of intervals.

Then, the non-dimensional form of the maximum, mean and RMS error is
calculated by normalising the maximum, mean and RMS errors to the idealised
cosine displacement function. The normalized maximum, mean and root-mean
square (NRMS) errors are defined as

(3.3) N.max or N.mean or NRMS =
max or mean or RMS

yi(Max) − yi(Min)
,

yi(Max) and yi(Min) are defined by the maximum and minimum values of the
cosine displacement function. The normalised maximum, mean and RMS values
are represented as percentage errors (normalised mean and NRMS are multiplied



Guidelines to select suitable parameters. . . 49

by 100%). This procedure is repeated for the error calculations for all sets of
spacing intervals.

Figure 6 demonstrates that the form of a cosine displacement distribution can
be captured in a piece-wise linear manner with increasing error for a/w > 0.1
(i.e. a > w/10). The maximum deviation error values vary from 2.3% to 25%
and normalised mean and RMS deviation error values vary from 2% to 18%. For
a/w = 0.1, the maximum deviation is < 2.5%, and the normalised mean and
RMS deviations are < 2%; for a/w ≤ 0.083 (a ≤ w/12) the maximum deviations
are < 2%, and normalised mean and RMS deviations are ∼ 1%. Taking ∼ 1%
as an acceptable NRMS error, it can be defined that a minimum of 12 equally
spaced intervals must be selected (a/w ≤ 0.083).

Fig. 6. Error in piece-wise linear fits to cosine distribution as a function of spacing
intervals a/w.

4. Parameters for the contour method

Element mesh size (s) for contour stress analysis

A regular array of first order, linear hexahedral 8-node brick finite elements
is commonly used to mesh the cut face of the finite element model in a contour
measurement. First order brick elements of this kind represent constant stress
in each element and have linear shape functions [34]. The errors introduced by
idealising a simple cosine displacement function using first order elements (with
linear variation in displacement from node to node) can be assessed using the
error analysis presented above (Section 3). Thus, at least 12 elements of constant
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size, s, are required to capture a cosine deformation profile of wavelength, w, that
is s ≤ w/12 (s/w ≤ 0.083) to ensure the NRMS error ≤ 1%.

Data smoothing (knot spacing, k)

In order to investigate the best choice for knot spacing to smooth the mea-
sured surface deformation data, errors associated with fitting an idealised func-
tion can be quantified in a similar way to the element mesh size study presented
in Section “Element mesh size (s) for contour stress analysis”. Cubic splines can
be used to fit the idealised cosine displacement profile over different sets of knot
spacing ranging from k/w 0.33 to 0.071 (i.e. k = w/3 to w/14). In order to inves-
tigate the deviation between each spline fit and the original cosine displacement
profile, the root-mean-squared (RMS), maximum and mean errors are calculated
for each set of knot spacing (k).

Figure 7 shows an example where 5 knots are used, that is k = w/4 (k/w =
0.25) to capture a cosine distribution. The plot also represents the spline fit
between the knots.

Fig. 7. Spline fit to w/4 knot spacing on a cosine displacement profile.

The root mean squared error (deviation) function is defined by Eq. (3.2), but
noting that here yi are the y coordinates of the cosine profile representing the
measurement data points, ŷi are the cubic spline fit data points and N is the total
number of data points for each knot spacing interval. The maximum deviation
error is found directly by considering the largest value of deviations. The mean
deviation error value is calculated by taking the mean of all the deviation values
of each fit.
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The non-dimensional form of the RMS, maximum and mean errors are then
calculated using Eq. (3.2) given earlier, where yi(Max) is the maximum displace-
ment value taking from the idealised cosine distribution function, and yi(Min)

is the minimum displacement value taking from an idealised cosine distribution
function. As previously the NRMS values are represented as percentage errors.
This error is repeated for each set of knot spacings.

Fig. 8. Error in cubic spline fits to a cosine distribution as a function of knot spacing
interval (k/w).

Figure 8 represents the error values versus knot spacing for the range of k
intervals from k/w = 0.33 to 0.071 (k = w/3 to w/14). Figure 8 shows that
the percentage error increases with increase in the knot spacing. However, the
errors are small because the spline fits efficiently capture the idealised cosine
profile. From Fig. 8 it is evident that knot spacings k/w ≤ 0.25 (k ≤ w/4) give
a NRMS error, normalised mean error and normalised maximum error < 1%.
However, as the knot spacing increases the error begins to ramp up (for example
for k/w = 0.33). This evidence shows that 4 knot intervals can capture the
idealised cosine displacement profile of wavelength, w with a NRMS error < 1%.

Surface deformation measurement spacing (d)

In order to acquire a good spline fit to the surface deformation profile intro-
duced by the relaxed residual stress field a suitable surface measurement spacing
d is required. The surface deformation of the cut face of a component in a con-
tour measurement is usually measured in a regular grid of point spacing (d) in
both x and y directions as shown in Fig. 9. For laser CMM measurements, each
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measured point is averaged over the laser beam diameter. For touch probe CMM
measurements each measurement point represents the height of the surface area
at which the probe makes the contact.

Fig. 9. Schematic drawing showing a regular grid of surface deformation sampling points for
the mating cut surfaces.

It can be intuitively argued that the measurement spacing, d, should be less
than or equal to the linear element mesh size used to idealise the smoothed
profile, that is d ≤ s, where s ≤ w/12. But ideally the measurement spacing
should be as small as possible, as several data points are required for cubic
spline smoothing of noisy data between knots, that is d≪ k.

5. Residual stress wavelength, w

The residual stress wavelengths of interest have to be defined in order to
apply the simple criteria developed above. A rigorous way of identifying the
dominant cosine form wavelengths present in a residual stress field is to carry
out the Fourier series analysis [35]. But preliminary knowledge of the full residual
stress field may not be available. Often the reason, why a contour measurement
is done, is to actually quantify the residual stress field.

It is more difficult to measure short wavelength residual stress distributions
because very fine surface deformations must be resolved as shown in Eq. (2.1).
The shortest residual stress length scale that can be resolved in a conventional
contour method measurement can be inferred from the characteristic length scale
of the surface roughness created by the WEDM process; RSm, the mean spac-
ing between the profile peaks, is an important surface roughness parameter as
it provides a measure of the mean length scale of noise introduced by the cut-
ting process. It has been estimated that the contour method is unlikely to be
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able to resolve variations in displacement across a length less than about five
times RSm [27]. The experimental results [36] show that, RSm is ≈ 0.15 mm for
a typical 0.25 mm diameter WEDM contour cut. Thus for this case the mini-
mum residual stress length scale that can be practically measured by a contour
method is of the order 0.5 to 1 mm.

More generally, residual stress wavelengths likely to be present can be esti-
mated using the following information:

• Prior knowledge: residual stress measurement results from other techniques,
from prediction or/and published data from a similar component.

• Component dimensions (gives maximum wavelengths).
• Expert judgment.

6. Discussion

The criteria developed in this study can be used for choosing the measure-
ment spacing d, cubic spline knot spacing k and finite element mesh size s for
the contour method data analysis, providing the residual stress wavelengths of
interest are known or can be estimated.

An appropriate estimation of the residual stress wavelengths of interest is es-
sential because it has a great influence on establishing suitable choices for data
analysis parameters. The developed criteria are based on a one dimensional ide-
alised cosine displacement function of fixed wavelength and a simple estimation
of errors. In practice, the contour method provides a two dimensional map of
stress using surface deformation data measured across a two dimensional plane.
Two dimensional cubic splines are used to smooth the deformation data and can
provide better accuracy in the stress results. But the deformation field usually
comprises a mixture of wavelengths including unwanted noise for which a more
robust analysis is desirable. A further consideration is that deformation data are
difficult to capture close to the edges of the specimen especially using a touch
probe CMM [28]. But the edge effects have not been considered in the above
study and again there is a scope for improving the criteria. The importance of
selecting appropriate data analysis parameters becomes very high where short
length scale residual stresses are of interest. But in order to resolve short length
scale residual stresses, a very fine surface deformation measurement density is
required for which an improved surface finish (lower roughness) is desirable to
reduce ‘noise’ levels. In addition, the cut surface should be free from cutting
effects. Therefore, a good quality of cut surface is essential for achieving a better
resolution and accuracy in contour method residual stress results together with
the suitable gauge size for data collection and data analysis parameters.

The gauge size for the contour method depends upon the spacing for the
surface deformation measurements, the optimum knot spacing used to smooth



54 N. Naveed

the deformation data, and the element size used in the finite element stress
analysis. The deformation of the cut surface should be measured using a suitable
measurement spacing (which is usually smaller than the FE mesh size), and then
the optimum knot spacing should be selected so that the associated cubic spline
is best fitted to the displacement data. Then finally, first order elements are
used to mesh the cut face of the finite element model for stress analysis. First
order elements have linear shape function and provide constant stresses for each
element. Thus, if first order elements are used the element size used at the cut
surface gives a measure of the effective gauge size. Therefore, the effective ‘top-
hat’ gauge size for the contour method can be controlled by FE element mesh size.

The following procedure is proposed to improve the reliability of contour
residual stress measurements, especially where short length scale stress fields are
of interest.

Step 1 : Compile specimen geometry data and material mechanical properties
including Young’s modulus, Poisson’s ratio and the material yield stress.

Step 2 : Estimate the residual stress profile across the measurement plane
from which the residual stress wavelengths w, of interest that best characterise
the expected stress field can be identified. This can be obtained from other
measurement techniques, from prediction or/and published data from a similar
component.

Step 3 : Perform WEDM contour cut using cutting conditions suggested
in [19]. For short length scale residual stress variations, cutting conditions giving
a fine surface finish should be chosen.

Step 4 : Define the contour surface measurement density based upon the de-
veloped criteria; that is d ≤ w/12 and d ≪ k noting that the finer the spacing
the better.

Step 5 : Measure the cut surface with defined sampling density.
Step 6: Perform data analysis steps.
Step 7 : Choose the initial knot spacing for cubic spline smoothing based upon

the wavelength analysis; that is k ≤ w/4.
Step 8: Select the finite element mesh size based upon the wavelength analysis;

that is s ≤ w/12.
Step 9 : Then, optimise the knot spacing using the uncertainty approach of

Prime [28], by examining the different k spacings across the initial k value
and calculate the stresses for each k increment. Estimate the averaged stress
uncertainty for each k increment. The final k value is selected by minimising
average uncertainty in the calculated stresses.

Step 10 : Perform final FE analysis to calculate stress results.
All above steps are summarised in the flowchart shown in Fig. 10.
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Fig. 10. Flowchart illustrating the proposed contour method data analysis procedure to
improve the robustness of the calculated results.

7. Conclusion

Three deformation data collection and analysis parameters have a major
influence on the contour method residual stress results: the surface deformation
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measurements spacing, d, the cubic spline knot spacing, k, chosen to smooth the
measured deformation and the finite element mesh size, s.

The contour method data collecting and analysis parameters have been inves-
tigated by considering a one dimensional idealised cosine function. The quality of
piece-wise linear and cubic spline fits to the idealised profile have been evaluated
by calculating the fitting errors. Threshold acceptable errors are defined which
inform the choice of these parameters.

• The residual stress wavelength, w, likely to be present in the specimen is first
needed to apply the simple developed criteria.

• For the measurement spacing, select d ≤ w/12 (d/w ≤ 0.083) and d≪ k not-
ing, the finer the spacing the better.

• For the knot spacing, select k ≤ w/4 (k/w ≤ 0.25).
• For the finite element mesh size, select s ≤ w/12 (s/w ≤ 0.083).
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