Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the context of finding galaxy mergers in large-scale surveys, we applied machine-learning algorithms that made use of flux measurements instead of using images (as is the current standard). By training multiple NNs using the Sloan Digital Sky Survey class-balanced data set of mergers and non-mergers, we found that sky-background error parameters could provide a validation accuracy of 92.64±0.15% and a training accuracy of 92.36±0.21%. Moreover, analyzing the NN identifications led us to find that a simple decision diagram using the sky error for two flux filters was enough to gain a 91.59% accuracy. By understanding how the galaxies vary along the diagram and trying to parametrize the methodology in the deeper images of the Hyper Suprime-Cam, we are currently trying to define and generalize this sky error-based methodology.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
111--126
Opis fizyczny
Bibliogr. 60 poz., rys., wykr.
Twórcy
autor
- Tartu Observatory, University of Tartu, Observatooriumi 1, Toravere 61602, Estonia
- National Centre for Nuclear Research, Pasteura 7, 02-093 Warszawa, Poland
autor
- National Centre for Nuclear Research, Pasteura 7, 02-093 Warszawa, Poland
autor
- National Centre for Nuclear Research, Pasteura 7, 02-093 Warszawa, Poland
- Astronomical Observatory of Jagiellonian University, Faculty of Physics
- Astronomy, and Applied Computer Science, ul. Orla 171, 30-244 Krakow, Poland
Bibliografia
- [1] Abraham R.G., van den Bergh S., Glazebrook K., Ellis R.S., Santiago B.X.,Surma P., Griffiths R.E.: The Morphologies of Distant Galaxies. II. Classifications from the Hubble Space Telescope Medium Deep Survey, The Astrophysical Journals, vol. 107, p. 1, 1996. doi: 10.1086/192352.
- [2] Abraham R.G., van den Bergh S., Nair P.: A New Approach to Galaxy Morphology. I. Analysis of the Sloan Digital Sky Survey Early Data Release, The Astrophysical Journal, vol. 588(1), pp. 218–229, 2003. doi: 10.1086/373919.
- [3] Ackermann S., Schawinski K., Zhang C., Weigel A.K., Turp M.D.: Using transfer learning to detect galaxy mergers, Monthly Notices of the Royal Astronomical Society, vol. 479(1), pp. 415–425, 2018. doi: 10.1093/mnras/sty1398.
- [4] Adelman-McCarthy J.K., Agüeros M.A., Allam S.S., Allende Prieto C., Anderson K.S., Anderson S.F., Annis J., et al.: The Sixth Data Release of the SloanDigital Sky Survey, The Astrophysical Journals, vol. 175(2), pp. 297–313, 2008. doi: 10.1086/524984.
- [5] Barton E.J., Geller M.J., Kenyon S.J.: Tidally Triggered Star Formation in ClosePairs of Galaxies, The Astrophysical Journal, vol. 530(2), pp. 660–679, 2000.doi: 10.1086/308392.
- [6] Bershady M.A., Jangren A., Conselice C.J.: Structural and Photometric Classification of Galaxies. I. Calibration Based on a Nearby Galaxy Sample, The Astronomical Journal, vol. 119(6), pp. 2645–2663, 2000. doi: 10.1086/301386.
- [7] Bottrell C., Hani M.H., Teimoorinia H., Ellison S.L., Moreno J., Torrey P., Hayward C.C., et al.: Deep learning predictions of galaxy merger stage and the importance of observational realism, Monthly Notices of the Royal Astronomical Society, vol. 490(4), pp. 5390–5413, 2019. doi: 10.1093/mnras/stz2934.
- [8] Conselice C.J.: The Relationship between Stellar Light Distributions of Galaxiesand Their Formation Histories, The Astrophysical Journals, vol. 147(1), pp. 1–28,2003. doi: 10.1086/375001.
- [9] Conselice C.J.: Early and Rapid Merging as a Formation Mechanism of Massive Galaxies: Empirical Constraints, The Astrophysical Journal, vol. 638(2), pp. 686–702, 2006. doi: 10.1086/499067.
- [10] Conselice C.J., Bershady M.A., Jangren A.: The Asymmetry of Galaxies: Physical Morphology for Nearby and High-Redshift Galaxies, The Astrophysical Journal, vol. 529(2), pp. 886–910, 2000. doi: 10.1086/308300.
- [11] Darg D.W., Kaviraj S., Lintott C.J., Schawinski K., Sarzi M., Bamford S., Silk J.,et al.: Galaxy Zoo: the properties of merging galaxies in the nearby Universe– local environments, colours, masses, star formation rates and AGN activity, Monthly Notices of the Royal Astronomical Society, vol. 401(3), pp. 1552–1563, 2010. doi: 10.1111/j.1365-2966.2009.15786.x.
- [12] Darg D.W., Kaviraj S., Lintott C.J., Schawinski K., Sarzi M., Bamford S., Silk J., et al.: Galaxy Zoo: the fraction of merging galaxies in the SDSS and their morphologies, Monthly Notices of the Royal Astronomical Society, vol. 401(2), pp. 1043–1056, 2010. doi: 10.1111/j.1365-2966.2009.15686.x.
- [13] De Propris R., Liske J., Driver S.P., Allen P.D., Cross N.J.G.: The Millennium Galaxy Catalogue: Dynamically Close Pairs of Galaxies and the Global Merger Rate, The Astronomical Journal, vol. 130(4), pp. 1516–1523, 2005. doi: 10.1086/433169.
- [14] Domínguez Sánchez H., Martin G., Damjanov I.e.a.: Identification of tidal features in deep optical galaxy images with convolutional neural networks, Monthly Notices of the Royal Astronomical Society, vol. 521(3), pp. 3861–3872, 2023.doi: 10.1093/mnras/stad750.
- [15] Duncan K., Conselice C.J., Mundy C.e.a.: Observational Constraints on theMerger History of Galaxies since z≈6: Probabilistic Galaxy Pair Countsin the CANDELS Fields, The Astrophysical Journal, vol. 876(2), 110, 2019.doi: 10.3847/1538-4357/ab148a.
- [16] Ellison S.L., Patton D.R., Simard L.e.a.: Galaxy Pairs in the Sloan DigitalSky Survey. I. Star Formation, Active Galactic Nucleus Fraction, and the Mass-Metallicity Relation, The Astronomical Journal, vol. 135(5), pp. 1877–1899, 2008.doi: 10.1088/0004-6256/135/5/1877.
- [17] Ferreira L., Conselice C.J., Duncan e.a.: Galaxy Merger Rates up to z∼3 Usinga Bayesian Deep Learning Model: A Major-merger Classifier Using IllustrisTNG Simulation Data, The Astrophysical Journal, vol. 895(2), 115, 2020. doi: 10.3847/1538-4357/ab8f9b.
- [18] Goldberger J., Roweis S., Hinton G., Salakhutdinov R.: Neighbourhood Components Analysis. In: Neighbourhood Components Analysis, vol. 17, 2004.
- [19] Goto T., Toba Y., Utsumi Y.e.a.: Hyper Suprime-Camera Survey of the AkariNEP Wide Field, Publication of Korean Astronomical Society, vol. 32(1), pp. 225–230, 2017. doi: 10.5303/PKAS.2017.32.1.225.
- [20] Gunn J.E., Carr M., Rockosi C.e.a.: The Sloan Digital Sky Survey Photometric Camera, The Astronomical Journal, vol. 116(6), pp. 3040–3081, 1998.doi: 10.1086/300645.
- [21] Ivezić Ž., Kahn S.M., Tyson e.a.: LSST: From Science Drivers to Reference Designand Anticipated Data Products, The Astrophysical Journal, vol. 873(2), 111, 2019. doi: 10.3847/1538-4357/ab042c.
- [22] Joseph R.D., Wright G.S.: Recent star formation in interacting galaxies - II.Super starbursts in merging galaxies., Monthly Notices of the Royal Astronomical Society, vol. 214, pp. 87–95, 1985. doi: 10.1093/mnras/214.2.87.
- [23] Kent S.M.: CCD surface photometry of field galaxies. II. Bulge/disk decompositions.,The Astrophysical Journals, vol. 59, pp. 115–159, 1985. doi: 10.1086/191066.
- [24] Kitzbichler M.G., White S.D.M.: A calibration of the relation between the abundance of close galaxy pairs and the rate of galaxy mergers, Monthly Notices of the Royal Astronomical Society, vol. 391(4), pp. 1489–1498, 2008.doi: 10.1111/j.1365-2966.2008.13873.x.
- [25] Lambas D.G., Tissera P.B., Alonso M.S.e.a.: Galaxy pairs in the 2dF survey- I. Effects of interactions on star formation in the field, Monthly Notices of the Royal Astronomical Society, vol. 346(4), pp. 1189–1196, 2003. doi: 10.1111/j.1365-2966.2003.07179.x.
- [26] Le Fèvre O., Abraham R., Lilly e.a.: Hubble Space Telescope imaging of theCFRS and LDSS redshift surveys - IV. Influence of mergers in the evolution of faint field galaxies from z~1, Monthly Notices of the Royal Astronomical Society, vol. 311(3), pp. 565–575, 2000. doi: 10.1046/j.1365-8711.2000.03083.x.
- [27] Lin L., Koo D.C., Willmer C.N.A.e.a.: The DEEP2 Galaxy Redshift Survey: Evolution of Close Galaxy Pairs and Major-Merger Rates up to z~1.2, The Astrophysical Journall, vol. 617(1), pp. L9–L12, 2004. doi: 10.1086/427183.
- [28] Lintott C., Schawinski K., Bamford S.e.a.: Galaxy Zoo 1: data release of morphological classifications for nearly 900 000 galaxies, Monthly Notices of theRoyal Astronomical Society, vol. 410(1), pp. 166–178, 2011. doi: 10.1111/j.1365-2966.2010.17432.x.
- [29] Lotz J.M., Jonsson P., Cox T.J., Primack J.R.: Galaxy merger morphologies and time-scales from simulations of equal-mass gas-rich disc mergers, Monthly Noticesof the Royal Astronomical Society, vol. 391(3), pp. 1137–1162, 2008. doi: 10.1111/j.1365-2966.2008.14004.x.
- [30] Lotz J.M., Primack J., Madau P.: A New Nonparametric Approach to Galaxy Morphological Classification, The Astronomical Journal, vol. 128(1), pp. 163–182, 2004. doi: 10.1086/421849.
- [31] Lupton R.H., Gunn J.E., Szalay A.S.: A Modified Magnitude System that Produces Well-Behaved Magnitudes, Colors, and Errors Even for Low Signal-to-Noise Ratio Measurements, The Astronomical Journal, vol. 118(3), pp. 1406–1410, 1999. doi: 10.1086/301004.
- [32] Mahajan S., Drinkwater M.J., Driver S.a.a.: Galaxy And Mass Assembly(GAMA): blue spheroids within 87 Mpc, Monthly Notices of the Royal Astronomical Society, vol. 475(1), pp. 788–799, 2018. doi: 10.1093/mnras/stx3202.
- [33] Margalef-Bentabol B., Wang L., La Marca A.e.a.: Galaxy merger challenge: Acomparison study between machine learning-based detection methods, Astronomy& Astrophysics, vol. 687, A24, 2024. doi: 10.1051/0004-6361/202348239.
- [34] Mihos J.C., Hernquist L.: Gasdynamics and Starbursts in Major Mergers,The Astrophysical Journal, vol. 464, p. 641, 1996. doi: 10.1086/177353.
- [35] Nevin R., Blecha L., Comerford e.a.: Accurate Identification of Galaxy Mergerswith Imaging, The Astrophysical Journal, vol. 872(1), 76, 2019. doi: 10.3847/1538-4357/aafd34.
- [36] Nevin R., Blecha L., Comerford J.e.a.: A declining major merger fraction with redshift in the local Universe from the largestyet catalogue of major and minormergers in SDSS, Monthly Notices of the Royal Astronomical Society, vol. 522(1), pp. 1–28, 2023. doi: 10.1093/mnras/stad911.
- [37] Oi N., Goto T., Matsuhara H.e.a.: Subaru/HSC deep optical imaging of infrared sources in the AKARI North Ecliptic Pole-Wide field, Monthly Notices of the Royal Astronomical Society, vol. 500(4), pp. 5024–5042, 2021. doi: 10.1093/mnras/staa3080.
- [38] Patton D.R., Grant J.K., Simard e.a.: A Hubble Space Telescope Snapshot Survey of Dynamically Close Galaxy Pairs in the CNOC2 Redshift Survey, The Astronomical Journal, vol. 130(5), pp. 2043–2057, 2005. doi: 10.1086/491672.
- [39] Patton D.R., Pritchet C.J., Carlberg R.G.e.a.: Dynamically Close Galaxy Pairsand Merger Rate Evolution in the CNOC2 Redshift Survey, The Astrophysical Journal, vol. 565(1), pp. 208–222, 2002. doi: 10.1086/324543.
- [40] Patton D.R., Pritchet C.J., Yee H.K.C., Ellingson E., Carlberg R.G.: Close Pairsof Field Galaxies in the CNOC1 Redshift Survey, The Astrophysical Journal, vol.475(1), pp. 29–42, 1997. doi: 10.1086/303535.
- [41] Pearson W.J., Rodriguez-Gomez V., Kruk S.e.a.: Determining the time beforeor after a galaxy merger event, Astronomy & Astrophysics, vol. 687, A45, 2024.doi: 10.1051/0004-6361/202449532.
- [42] Pearson W.J., Suelves L.E., Ho S.C.C.e.a.: North Ecliptic Pole merging galaxy catalogue, Astronomy & Astrophysics, vol. 661, A52, 2022. doi: 10.1051/0004-6361/202141013.
- [43] Pearson W.J., Wang L., Alpaslan e.a.: Effect of galaxy mergers on star-formationrates,Astronomy & Astrophysics, vol. 631, A51, 2019. doi: 10.1051/0004-6361/201936337.
- [44] Pearson W.J., Wang L., Trayford e.a.: Identifying galaxy mergers in observations and simulations with deep learning, Astronomy & Astrophysics, vol. 626, A49,2019. doi: 10.1051/0004-6361/201935355.
- [45] Rodrigues M., Puech M., Flores H., Hammer F., Pirzkal N.: Testing the hierarchical assembly of massive galaxies using accurate merger rates out to z 1.5, Monthly Notices of the Royal Astronomical Society, vol. 475(4), pp. 5133–5143, 2018. doi: 10.1093/mnras/sty098.
- [46] Sanders D.B., Mirabel I.F.: Luminous Infrared Galaxies,Annual Reviewof Astronomy and Astrophysics, vol. 34, p. 749, 1996. doi: 10.1146/annurev.astro.34.1.749.
- [47] Sazonova E., Morgan C., Balogh M.e.a.: RMS asymmetry: a robust metricof galaxy shapes in images with varied depth and resolution, arXiv e-prints, arXiv:2404.05792, 2024. doi: 10.48550/arXiv.2404.05792.
- [48] Snyder G.F., Lotz J., Moody C.e.a.: Diverse structural evolution at z>1 in cosmologically simulated galaxies, Monthly Notices of the Royal Astronomical Society, vol. 451(4), pp. 4290–4310, 2015. doi: 10.1093/mnras/stv1231.
- [49] Sola E., Duc P.A., Richards F.e.a.: Characterization of low surface bright-ness structures in annotated deep images,Astronomy, vol. 662, A124, 2022.doi: 10.1051/0004-6361/202142675.
- [50] Stoughton C., Lupton R.H., Bernardi M.e.a.: Sloan Digital Sky Survey: EarlyData Release, The Astronomical Journal, vol. 123(1), pp. 485–548, 2002.doi: 10.1086/324741.
- [51] Suelves L.E., Pearson W.J., Pollo A.: Merger identification through photometric bands, colours, and their errors, Astronomy & Astrophysics, vol. 669, A141, 2023.doi: 10.1051/0004-6361/202244509.
- [52] Takamiya M.: Galaxy Structural Parameters: Star Formation Rate and Evolution with Redshift, The Astrophysical Journal Supplement Series, vol. 122(1), pp. 109–150, 1999. doi: 10.1086/313216.
- [53] Toomre A., Toomre J.: Galactic Bridges and Tails,The Astrophysical Journal, vol. 178, pp. 623–666, 1972. doi: 10.1086/151823.
- [54] Walmsley M., Ferguson A.M.N., Mann R.G.e.a.: Identification of low surface brightness tidal features in galaxies using convolutional neural networks, Monthly Notices of the Royal Astronomical Society, vol. 483(3), pp. 2968–2982, 2019.doi: 10.1093/mnras/sty3232.
- [55] Walmsley M., Lintott C., Géron T.e.a.: Galaxy Zoo DECaLS: Detailed visual morphology measurements from volunteers and deep learning for 314 000 galaxies, Monthly Notices of the Royal Astronomical Society, vol. 509(3), pp. 3966–3988, 2022. doi: 10.1093/mnras/stab2093.
- [56] Wang L., Pearson W.J., Rodriguez-Gomez V.: Towards a consistent frameworkof comparing galaxy mergers in observations and simulations, Astronomy & Astrophysics, vol. 644, A87, 2020. doi: 10.1051/0004-6361/202038084.
- [57] White S.D.M., Frenk C.S.: Galaxy Formation through Hierarchical Clustering, The Astrophysical Journal, vol. 379, p. 52, 1991. doi: 10.1086/170483.
- [58] White S.D.M., Rees M.J.: Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering., Monthly Notices of the Royal Astronomical Society, vol. 183, pp. 341–358, 1978. doi: 10.1093/mnras/183.3.341.
- [59] York D.G., Adelman J., Anderson e.a.: The Sloan Digital Sky Survey: Tech-nical Summary,The Astronomical Journal, vol. 120(3), pp. 1579–1587, 2000.doi: 10.1086/301513.
- [60] Zalesky L.M.: The Hawaii Two-0 Twenty Square Degree Survey. In: American Astronomical Society Meeting Abstracts, American Astronomical Society Meeting Abstracts, vol. 237, 215.05, 2021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2316036b-6712-4fe7-a023-5b75ea0f43ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.