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UPPER BOUNDS
FOR THE EXTENDED ENERGY OF GRAPHS

AND SOME EXTENDED EQUIENERGETIC GRAPHS
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Communicated by Adam Paweł Wojda

Abstract. In this paper, we give two upper bounds for the extended energy of a graph one
in terms of ordinary energy, maximum degree and minimum degree of a graph, and another
bound in terms of forgotten index, inverse degree sum, order of a graph and minimum degree
of a graph which improves an upper bound of Das et al. from [On spectral radius and energy of
extended adjacency matrix of graphs, Appl. Math. Comput. 296 (2017), 116–123]. We present
a pair of extended equienergetic graphs on n vertices for n ≡ 0(mod 8) starting with a pair
of extended equienergetic non regular graphs on 8 vertices and also we construct a pair of
extended equienergetic graphs on n vertices for all n ≥ 9 starting with a pair of equienergetic
regular graphs on 9 vertices.
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1. INTRODUCTION

All graphs considered in this paper are simple and finite. Let G be a graph with vertex
set V (G) = {v1, v2, . . . , vn} and edge set E(G). Two vertices vi and vj in V (G) are
said to be adjacent in G if vivj ∈ E(G). The degree of a vertex vi in G is the number
of vertices that are adjacent with vi and we denote it by di. Also, we denote by ∆ and
δ, the maximum degree and the minimum degree of G, respectively. The adjacency
matrix of G, denoted by A(G), is the n× n matrix [aij ], where aij is 1 if the vertices
vi and vj are adjacent in G, 0 otherwise. Since A(G) is a real symmetric matrix, all
its eigenvalues are real. The spectrum of G is the collection of all eigenvalues of A(G).
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Throughout the paper, we denote the eigenvalues of A(G) by λi(G), i = 1, 2, . . . , n,
where λ1(G) ≥ λ2(G) ≥ . . . ≥ λn(G). Studies on graph spectrum can be found in [4,5].
The energy ε(G) of a graph G is defined as

ε(G) =
n∑

i=1
|λi(G)|.

In 1978, Gutman [10] introduced the concept of graph energy. In recent years, the
concept of graph energy has been extensively studied by many researchers. Results
on graph energy can be found in a book [12] by Li et al. and references cited therein.
Two graphs of same order are said to be equienergetic if their energies are same.
In [11], Indulal and Vijayakumar have constructed a pair of equienergetic graphs
on n vertices for n = 6, 14, 18 and for all n ≥ 20. Later, Jianping Liu, Bolian Liu
[14] and Ramane, Walikar [17] have independently proved that there exists a pair of
equienergetic graphs on n vertices for all n ≥ 9. Studies on equienergetic graphs can
be found in [1–3,9, 13,18,19] and references therein.

In [20], Yang et al. introduced a new matrix called the extended adjacency matrix,
denoted by Aex(G) and is defined as the n× n matrix whose (i, j)-entry is equal to
1
2

(
di

dj
+ dj

di

)
if vivj ∈ E(G) and 0 otherwise. Since Aex(G) is real symmetric matrix, all

its eigenvalues are real. We denote the eigenvalues of Aex(G) by ηi(G) i = 1, 2, . . . , n,
where η1(G) ≥ η2(G) ≥ . . . ≥ ηn(G). It can be noted that if G is a regular graph, then
Aex(G) = A(G). The extended energy εex(G) of a graph G (cf. [6, 20]) is defined as

εex(G) =
n∑

i=1
|ηi(G)|.

In analogous to equieneregtic graphs, two graphs are said to be extended equienergetic
graphs if their extended graph energies are same. The forgotten topological index
F (G) [8] and the inverse degree sum r(G) [16] of a graph G are two degree based
topological indices. These are defined as

F (G) =
∑

vi∈V (G)

d3
i and r(G) =

∑

vi∈V (G)

1
di
.

In [6], Das et al. presented various upper and lower bounds for η1(G) and εex(G).
Motivated by this, in this paper, we give two upper bounds for the extended energy of
graphs one in terms of ε(G), ∆ and δ, and another in terms of F (G), r(G), n and δ.
We present a pair of extended equienergetic graphs on n vertices for n ≡ 0(mod 8)
starting with a pair of extended equienergetic non regular graphs on 8 vertices and
also we construct a pair of extended equienergetic graphs on n vertices for all n ≥ 9
starting with a pair of equienergetic regular graphs on 9 vertices.



Upper bounds for the extended energy of graphs. . . 7

2. UPPER BOUNDS FOR THE EXTENDED ENERGY

In this section, we give two upper bounds for the extended energy of a graph.
Let M be a m × n matrix. We denote the singular values of M by si(M),

i = 1, 2, . . . ,m, where s1(M) ≥ s2(M) ≥ . . . ≥ sm(M). It is worth to note that
the sum of all singular values of A(G)(respectively, Aex(G)) is the energy (respectively,
extended energy) of G. We need the following lemmas (see [15]) to prove our main
results.
Lemma 2.1. If A and B are n× n complex matrices. Then

k∑

i=1
si(A+B) ≤

k∑

i=1
si(A) +

k∑

i=1
si(B), k = 1, 2, . . . , n.

Lemma 2.2. If A1, A2, . . . , Am are n× n complex matrices. Then

k∑

i=1
si(A1A2 · · ·Am) ≤

k∑

i=1
si(A1)si(A2) · · · si(Am), k = 1, 2, . . . , n.

In the following theorem, we give an upper for the extended energy of a graph
in terms of ordinary energy.
Theorem 2.3. Let G be a graph of order n. Then εex(G) ≤ ∆

δ ε(G).
Proof. Let D(G) = diag(d1, d2, . . . , dn), where d1 ≥ d2 ≥ . . . ≥ dn. From the definition
of extended adjacency matrix of a graph, it is easy to see that

Aex(G) = B +BT

2 , B := D−1(G)A(G)D(G). (2.1)

Applying Lemmas 2.1 and 2.2 in (2.1), we obtain

εex(G) ≤
n∑

i=1
si(B)

≤
n∑

i=1
si(D−1(G)si(A(G))si(D(G)))

=
n∑

i=1

di
dn−i+1

si(A(G)).

Since di

dn−i+1
≤ ∆

δ , from the above inequality, it follows that

εex(G) ≤ ∆
δ

n∑

i=1
si(A(G)) = ∆

δ
ε(G).

The following theorem gives an upper bound for εex(G) in terms of F (G), r(G), δ
and n.
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Theorem 2.4. Let G be a graph with n vertices and m edges. We assume that G has
no isolated vertices. Then

εex(G) ≤
√
n

2

(
F (G)
δ2 + δ2r(G)

)
(2.2)

with equality holding if and only if G ∼= n
2K2.

Proof. We have

2
n∑

i=1
ηi(G)2 =

∑

vivj∈E(G)

(
di
dj

+ dj
di

)2

= 2m+
∑

vivj∈E(G)

(
d2
i

d2
j

+
d2
j

d2
i

)

= 2m+
∑

vi∈V (G)

1
d2
i


 ∑

vivj∈E(G)

d2
j




= 2m+
∑

vi∈V (G)




 1
d2
i

∑

vivj∈E(G)

(
d2
j − δ2)


+ δ2

di




≤ 1
δ2

∑

vi∈V (G)

∑

vivj∈E(G)

d2
j +

∑

vi∈V (G)

δ2

di

= F (G)
δ2 + δ2r(G).

Thus
2

n∑

i=1
ηi(G)2 ≤ F (G)

δ2 + δ2r(G). (2.3)

Now from Cauchy-Schwarz inequality and (2.3), we have

εex(G) =
n∑

i=1
|ηi(G)| ≤

√√√√n
n∑

i=1
ηi(G)2 ≤

√
n

2

(
F (G)
δ2 + δ2r(G)

)
.

Moreover, the equality holds if and only if |η1(G)| = |η2(G)| = . . . = |ηn(G)| and G is
a regular graph. Let H be a regular connected component of G and ηi1, ηi2, . . . , ηik be
the extended eigenvalues of H arranged in decreasing order such that |ηi1| = |ηi2| =
. . . = |ηik|. Then from Perron–Frobenius theory ηi1 is simple and as

∑k
j=1 ηij = 0,

it follows that k = 2, i.e., H = K2. This completes the proof.

Remark 2.5. Das et al. [6] gave the following upper bound

εex(G) ≤
√(

∆
δ

+ δ

∆

)√
nF (G)

2δ2 . (2.4)
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Since
(∆
δ + δ

∆
)
≥ 2 and F (G)

δ2 ≥ 2m ≥ δ2
n∑

i=1

1
di
, it follows that our upper bound

in (2.2) is sharper than (2.4).

3. SOME FAMILIES OF EXTENDED EQUIENERGETIC GRAPHS

In this section, we describe some methods to construct extended equienergetic graphs
on n vertices. We start with the following definitions (cf. [11]).

Definition 3.1. The duplication of a graph G, denoted by Du(G), is the graph
obtained by taking two copies of the vertex set V (G) of G and then joining a vertex
in the first copy of V (G) to a vertex in the second copy of V (G) whenever they are
adjacent in G. See Figure 1.

Definition 3.2. The double graph Du∗(G) is the graph obtained by taking two copies
of G and then joining a vertex in the first copy of G to a vertex in the second copy of G
whenever they are adjacent in G. See Figure 1.

G Du∗(G) Du(G)

Fig. 1. Graphs Du(G) and Du∗(G)

LetM = [mij ] and N be two matrices. The Kronecker productM⊗N ofM and N
is the matrix obtained by replacing each entry mij of M by mijN . If M and N are
square matrices, then it is well-known that λµ is an eigenvalue of M ⊗N whenever λ
and µ are the eigenvalues of M and N , respectively. In the following theorem, we give
a method to construct a pair of extended equieneregtic graphs.

Theorem 3.3. Let G be a graph on n vertices. Then the graphs Du(G) and Du∗(G)
are extended equienergetic graphs.
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Proof. From the definitions of Du(G) and Du∗(G), and also by proper labelling of
the vertices of Du(G) and Du∗(G), it can be easily seen that

Aex(Du(G)) =
[

0 Aex(G)
Aex(G) 0

]
=
[
0 1
1 0

]
⊗Aex(G)

and

Aex(Du∗(G)) =
[
Aex(G) Aex(G)
Aex(G) Aex(G)

]
=
[
1 1
1 1

]
⊗Aex(G).

Thus the spectrum of Aex(Du(G)) and Aex(Du∗(G)) are {±η1(G),±η2(G), . . .,
±ηn(G)} and {2η1(G), 2η2(G), . . . , 2ηn, 0, 0, . . . , 0}, respectively. So εex(Du(G)) =
εex(Du∗(G)).

Let G and H be graphs with vertex sets V (G) = {u1, u2, . . . , un} and V (H) =
{v1, v2, . . . , vm}, respectively. The Kronecker product of G and H, denoted by G⊗H,
is the graph with vertex set V (G)× V (H) and two vertices (ui, vj) and (uk, vl) are
adjacent in G⊗H if and only if ui and uk are adjacent in G and vj and vl are adjacent
in H. In the following theorem, we construct some extended equienergetic graphs
starting with a pair of extended equienergetic non regular graphs on 8 vertices.

Theorem 3.4. There exists a pair of extended equienergetic graphs on n vertices
for all n ≡ 0(mod 8).

Proof. Observe that, if G is a regular graph on n vertices and H is an arbitrary graph
on m vertices, then the extended adjacency matrix of G ⊗ H, i.e., Aex(G ⊗ H) =
A(G) ⊗ Aex(H). Hence the spectrum of Aex(G ⊗ H) consists of λi(G)ηj(H) for
i = 1, 2, . . . , n and j = 1, 2, . . . ,m. Moreover, εex(G⊗H) = ε(G)εex(H). Thus, if H1
and H2 are extended equieneregtic graphs and G any regular graph, then G⊗H1 and
G ⊗H2 are extended equieneregtic graphs. Now from Theorem 3.3, it follows that
the graphs Du(G) and Du∗(G) for G as depicted in Fig. 1 are extended equienergetic
graphs on 8 vertices. So the graphs Km ⊗ Du(G) and Km ⊗ Du∗(G) are extended
equienergetic graphs on 8m vertices for all m > 1.

We denote by Jn1×n2 and J ′n1×n2 , the n1 × n2 matrix having all its entries as 1
and the matrix obtained from Jn1×n2 by replacing each entry by 0 except the first
diagonal entry, respectively.

Lemma 3.5. For i = 1, 2, let Mi be a normal matrix of order ni having all its row
sums equal to ri. Suppose ri, θi2, θi3, . . . , θini are the eigenvalues of Mi, then for any
two constants a and b, the eigenvalues of

M :=
[

M1 aJn1×n2

bJn2×n1 M2

]
,

are θij for i = 1, 2, j = 2, 3, . . . , ni and the two roots of the quadratic equation
(x− r1)(x− r2)− abn1n2 = 0.
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Proof. Since Mi is a normal matrix having all its row sums equal to ri, we have
Mi = UiDiU

∗
i , where Ui is a unitary matirx having its first column vector as

(1, 1, . . . , 1)T /√ni and Di is a diagonal matrix with ri, θi2, θi3, . . . , θini as its diagonal
entries. So

M =



U1D1U

∗
1 aJn1×n2

bJn2×n1 U2D2U
∗
2




=
[
U1 0
0 U2

]


D1 U∗1 aJn1×n2U2

U∗2 bJn2×n1U1 D2



[
U∗1 0
0 U∗2

]

=
[
U1 0
0 U2

]


D1 a
√
n1n2J

′
n1×n2

b
√
n1n2J

′
n2×n1 D2



[
U∗1 0
0 U∗2

]
.

Thus M and
B :=

[
D1 a

√
n1n2J

′
n1×n2

b
√
n1n2J

′
n2×n1 D2

]

are similar matrices, and hence have the same spectrum. Expanding |xI − B| by
Laplace’s method [7] along i-th column i = 2, 3, . . . , n1, n1 + 2, . . . , n2, we see that

|xI −B| = ((x− r1)(x− r2)− abn1n2)
ni∏

j=2
i=1,2

(x− θij).

This completes the proof.

Definition 3.6 ([17]). Let G and H be two graphs. The join G ∨ H of G and H
is a graph obtained from G and H by joining each vertex of G to every vertex in H.

In the following theorem, we give the extended spectrum of G ∨H when both G
and H are regular graphs.

Theorem 3.7. For i = 1, 2, let Gi be a ri-regular graph on ni vertices. Then the ex-
tended spectrum of G1 ∨G2 consists of λj(Gi) for i = 1, 2, j = 2, 3, . . . , ni and the two
roots of the quadratic equation

(x− r1)(x− r2)− n1n2
4

(
r1 + n2
r2 + n1

+ r2 + n1
r1 + n2

)2
.

Proof. Since Gi is a ri regular graph on ni vertices, we have

Aex(G1 ∨G2) =


 A(G1) 1

2

(
r1+n2
r2+n1

+ r2+n1
r1+n2

)
Jn1×n2

1
2

(
r1+n2
r2+n1

+ r2+n1
r1+n2

)
Jn2×n1 A(G2)


 .

Letting a = b = 1
2

(
r1+n2
r2+n1

+ r2+n1
r1+n2

)
in Lemma 3.5 we arrive at the result.
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Theorem 3.8. There exists a pair of extended equienergetic graphs on n vertices
for all n ≥ 9.
Proof. Let H1 and H2 be graphs as shown in Figure 2.

H1 H2

Fig. 2. Graphs H1 and H2

It can be seen that the line graphs L(H1) and L(H2) are equienergetic 4-regular
graphs [17] on 9 vertices.

Thus from the above theorem, the graphs Km ∨ L(H1) and Km ∨ L(H2) are
extended equienergetic graphs on 9 +m vertices for m = 1, 2, . . . .
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