PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of increasing nickel content in soil on Miscanthus × giganteus Greef and Deu. Yielding and on the content of nickel in above-ground biomass

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ wzrastającej zawartości niklu w glebie na plonowanie Miscanthus x giganteus Greef i Deu. i zawartość niklu w nadziemnej biomasie
Języki publikacji
EN
Abstrakty
EN
The aim of the research conducted in a 2-year pot experiment in an unheated plastic tunnel was to determine suitability of Miscanthus × giganteus for phytoextraction of nickel from soil as well as to assess tolerance of this species on increasing concentrations of this metal in soil. Pots were filled with mineral soil (sand) and a mixture of soil with high-moor peat and three levels of nickel were introduced, i.e. 75 mg dm-3, 150 mg dm-3 and 600 mg dm-3 and the control combinations used substrates without the addition of nickel. Nickel was introduced only in the first year of the experiment in the form of nickel sulfate (NiSO4 · 6H2O). Miscanthus × giganteus accumulated a considerable amount of nickel in biomass. Miscanthus × giganteus growing in contaminated mineral soil turned out to be a species tolerant to high nickel concentrations.
PL
Celem badań prowadzonych w dwuletnim doświadczeniu wazonowym w nieogrzewanym tunelu foliowym, było określenie przydatności Miscanthus × giganteus do fitoekstrakcji niklu z gleb, jak również ocena tolerancji tego gatunku na wzrastające stężenia tego metalu w glebie. Wazony wypełniono glebą mineralną (piasek słabo gliniasty) oraz mieszaniną gleby z torfem wysokim i wprowadzono do nich trzy poziomy zawartości niklu: 75 mg·dm-3 , 150 mg·dm-3 oraz 600 mg·dm-3 a jako warianty kontrolne zastosowano podłoża bez jego dodatku. Nikiel został wprowadzony tylko w pierwszym roku badań, w postaci siarczanu niklu (NiSO4·6H2O). Miscanthus × giganteus kumuluje znaczącą ilość niklu w biomasie. Miscanthus × giganteus rosnący w zanieczyszczonej glebie mineralnej okazał się gatunkiem tolerancyjnym na wysokie stężenia niklu.
Rocznik
Strony
72--79
Opis fizyczny
Bibliogr. 45 poz., tab.
Twórcy
autor
  • Poznań University of Life Sciences, Poland Department of Plant Nutrition
Bibliografia
  • [1] Adhikari, T. (2012). Phytoaccumulation and tolerance of Ricinus communis L. to nickel, International Journal of Phytoremediation, 14, 5, pp. 81-92.
  • [2] Ahmad, M.S., Ashraf, M. & Hussain, M. (2011). Phytotoxic effect of nickel on yield and concentration of macro- and micro-nutrients in sunflower (Helianthus annuus L.) achenes, Journal of Hazardous Materials, 30, 185, 2-3, pp. 295-303.
  • [3] Antoniewicz, J. & Jasiewicz, Cz. (2002). Estimation of usefulness of different plant species for phytoremediation of soils contaminated with heavy metals, Acta Scientarum Polonorum Formatio Circumiectus,1-2, pp. 119-130. (in Polish)
  • [4] Baker, A.J.M., McGrath, S.P., Reeves, R.D. & Smith, J.A.C. (2000). Metal hyperaccumulator plants: a review of the ecology and physiology of a biochemical resource for phytoremediation of metal- -polluted soils, in: Phytoremediation of Contaminated Soil and Water, Terry, N. & Banuelos, G. (Eds.), Lewis Publishers, pp. 85-107.
  • [5] Bosiacki, M. & Roszyk, J. (2010). The comparing methods of mineralization of plant material on the content of heavy metals, Aparatura Badawczo Dydaktyczna, 4, pp. 37-41. (in Polish)
  • [6] Bosiacki, M. & Tyksiński, W. (2006). Dependence between the content of organic carbon and the kontent of cadmium and lead in horticultural substrates, Acta Agrophysica, 134, 7(3), pp. 517-526. (in Polish)
  • [7] Bosiacki, M. & Wojciechowska, E. (2012). Phytoextraction of nickel by selected ornamental plants, Ecological Chemistry and Engineering S, 19, 3, pp. 331-345.
  • [8] Bosiacki, M. & Zieleziński, Ł. (2011). Phytoextraction of nickel by selected species of lawn grasses from substrates contaminated with heavy metals, Acta Scientarum Polonorum Hortorum Cultus, 10(3), pp. 155-173.
  • [9] Boyajian, G.E. & Sumner, R.B. (1997). Phytoremediation: a cost-effective cleanup solution, Chemical Waste Litigation Reporter, 34, pp. 967-974.
  • [10] Boyd, R.S. (1998). Hyperaccumulation as a plant defensive strategy, in: Plants that hyperaccumulate heavy metals, Brooks R.R. (Eds). Oxford. UK: CAB International, pp. 181-201, Oxford 1998.
  • [11] Boyd, R.S. & Martens, S.N. (1994). Nickel hyperaccumulated by Thlaspi montanum var. montanum is acutely toxic to an insect herbivore, Oikos, 70, 1, pp. 21-25. Published by: Wiley.
  • [12] Drążkiewicz, M. (1994). Effect of nickel on the photosynthetic apparatus of plants, Wiadomości Botaniczne, 38(1/2), pp. 77-84. (in Polish)
  • [13] Golcz, A. (2011). Soil salinity and acidity, Research methods in plant sciences vol. 3. Soil Sickness. Narwal S.S. Politycka B. Fengzhi Wu. Sampietro D.A. (Eds). Studium Press LLC, pp. 43-53, Houston, USA 2011.
  • [14] Golcz, A. & Bosiacki, M. (2011). Soil Organic Matter, Research methods in plant sciences vol. 3. Soil Sickness. Narwal S.S.. Politycka B., Fengzhi Wu., Sampietro D.A. (Eds). Studium Press LLC, pp. 68-78, Houston, USA 2011
  • [15] Greef, J.M. & Deuter, M. (1993). Synataxonomy of Miscanthus × giganteus (GREEF et DEU), Angewandte Botanik, 67, pp. 87-90.
  • [16] Hedde, M., van Oort, F., Boudon, E., Abonnel, F. & Lamy, I. (2013). Responses of soil macroinvertebrate communities to Miscanthus cropping in different trace metal contaminated soils, Biomass and Bioenergy, 30, pp. 1-8.
  • [17] Jaffré, T., Brooks, R.R., Lee, J. & Reeves R.D. (1976). Sebertia acuminate: a hyperaccumulator of nickel from New Caledonia, Science, 193, pp. 579-580
  • [18] Kabała, C., Karczewska, A. & Kozak, M. (2010). Energetic plants in reclamation and management of degraded soils, Zeszyty Naukowe Uniwesytetu Przyrodniczego we Wrocławiu. Rolnictwo, XCVI, 576, pp. 97-118.
  • [19] Kabata-Pendias, A. & Pendias, H. (1999). Biochemistry trace elements, PWN, Warszawa 1999. (in Polish)
  • [20] Kalembasa, D. (2006). The amount and chemical composition of ash obtained from biomass of energy crops, Acta Agrophysica, 7, 4, pp. 909-914.
  • [21] Kalembasa, D. & Malinowska, E. (2009a). Contents of cadmium. lead and nickel at different development stages of selected Miscanthus genotypes, Ecogical Chemistry and Engineering A, 16, 4, pp. 349-356.
  • [22] Kalembasa, D. & Malinowska, E. (2009b). The yield and content of trace elements in biomass of miscanthus sacchariflorus (Maxim.) Hack. and in soil in the third year of a pot experiment, Journal of Elementology, 14, 4, pp. 685-691.
  • [23] Knypl, S. (1980). Is nickel an essential element for plant? Wiadomości Botaniczne, 24, pp. 17-30. (in Polish)
  • [24] Kocoń, A. & Matyka, M. (2012). Phytoextractive potential of Miscanthus giganteus and Sida hermaphrodita growing under moderate pollution of soil with Zn and Pb, Journal of Food, Agriculture & Environment, 10, 2, pp. 1253-1256.
  • [25] Kozik, E. & Golcz, A. (2011). Plant nutrients, Research methods in plant sciences vol. 3. Soil Sickness. Narwal S.S., Politycka B., Fengzhi Wu,. Sampietro D.A. (Eds). Studium Press LLC, pp. 21-41, Houston, USA 2011
  • [26] Lewandowski, I., Clifton-Brown, J.C., Scurlock, J.M.O. & Huisman, W. (2000). Miscanthus. European experience with a novel energy crop, Biomass & Bioenergy, 19, pp. 209-227.
  • [27] McGrath, S.P. & Zhao, F.J. (2003). Phytoextraction of metals and metalloids from contaminated soils, Current Opinion in Biotechnology, 14, pp. 277-282.
  • [28] Mocek, A. & Drzymała, S. (2010). The genesis, analysis, classification of soils, Poznań: Wyd. UP 2003. (in Polish)
  • [29] Moya, J.L., Ros, R. & Picazo, I. (1993). Influences of cadmium and nickel on growth net photosynthesis and carbohydrate distribution in rice plants, Photosynthesis Research, 36, pp. 75-80.
  • [30] Nadgórska-Socha, A. & Ciepał, R. (2009). Phytoextraction of zinc, lead and cadmium with Silene vulgaris Moench (Garcke) in the Postindustrial Area, Ecological Chemistry Engineering A, 16, 7, pp. 831-837.
  • [31] Nowosielski O. (1988). Principles developed in gardening fertilizer recommendations. Third Edition, Państwowe Wydawnictwo Rolnicze i Leśne Warszawa 1988. (in Polish)
  • [32] Pogrzeba, M., Krzyżak, J., Sas-Nowosielska, A., Majtkowski, W., Małkowski, E. & Kita, A. (2011). A heavy metal environment al threat resulting from combustion of biofuels of plant origin, Environmental Heavy Metal Pollution and Effects on Child Mental Development. NATO Science for Peace and Security. Series C: Environmental Security, 1, pp. 213-225.
  • [33] PTG (2009). Particle size distribution and textural classes of soils and mineral materials - classification of Polish Society of Soil Sciences 2008. Roczniki Gleboznawcze, Polskie Towarzystwo Gleboznawcze, 60, 2, pp. 5-16. (in Polish)
  • [34] Pulford, I.D. & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees - a review, Enviroment International, 23, pp. 529-540.
  • [35] Pyter, R., Heaton, E., Dohleman, F., Voigt, T. & Long, S. (2009). Agronomic Experiences with Miscanthus x giganteus in Illinois, USA, Biofuels: Methods and Protocols. Methods in Molecular Biology, Jonathan R. Mielenz (Eds). Humana Press, a part of Springer Science+Business Media. LLC 2009, pp. 41-52.
  • [36] Reeves, R.D. (1992). Hyperaccumulation of nickel by serpentine plants. In: Baker A.J.M. Proctor J., Reeves R.D. (Eds) The vegetation of ultramafic (serpentine) soils, Intercept, 253-277, Andover, UK 1992.
  • [37] Reeves, R.D. & Baker, A.J.M. (2000). Metal-accumulating plants, in: Phytoremediation of toxic metals: using plants to clean up the environment, Raskin, I. Ensley B.D. (Eds), John Wiley, 193-229, New York, USA 2000.
  • [38] Ros, R., Cooke, D.T., Martinez-Cortina, C. & Picazo, I. (1992). Nickel and cadmium related changes in growth. plasma membrane lipid composition, ATPase hydrolytic activity and proton-pumping of rice (Oryza sativa L. cv. Bahia) shoots, Journal of Experimental Botany, 43, pp. 1475-1481.
  • [39] Salt, D.E., Smith, RD. & Raskin, I. (1998). Phytoremediation, Annual Review of Plant Physiology and Plant Moecular Biology, 49, pp. 643-668.
  • [40] Sheoran, I.S., Singal, H.R. & Singh, R. (1990). Effect of cadmium and nickel on photosynthetic carbon reduction cycle in pigeon pea (Cajanus cajan L.), Plant Soil, 129, pp. 243-249.
  • [41] Szempliński, W. & Dubis, B. (2011). Preliminary studies on yielding and energetical efficiency of selected crops grown for biogas generation, Fragmenta Agronomica, 28, 1, pp. 77-86
  • [42] Tyksiński, W., Roszyk, J. & Kowalczyk, W. (2002). The influence of mineralization procedures of plant material on cadmium determination by ICP method, Roczniki Akademii Rolniczej w Poznaniu, CCCXLI, Ogrodnictwo, 35, pp. 89-93. (in Polish)
  • [43] Van Assche, F. & Clijsters, H. (1990). Effects of metals on enzyme activity in plants, Plant, Cell and Environment, 13, pp. 195-206.
  • [44] Van der Ent, A., Baker, A.J.M, Reeves, R.D., Pollard, A.J. & Schat, H. (2013). Hyperaccumulators of metal and metalloid trace elements: Facts and fiction, Plant Soil, 362, pp. 319-334.
  • [45] Żurek, G. & Majtkowski, W., (2009). Alternative plant species in phytoremediation of heavy metals from polluted areas, Problemy Inżynierii Rolniczej, 17, 3, pp. 83-89. (in Polish)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-230c890d-bb0c-4be1-ae6d-2a0b3ee21f05
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.