PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Sc Addition on the Microstructure and Mechanical Properties of Melt-Spun Al-10Ni Alloys

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work, rapidly solidified Al-10Ni-XSc (X = 0, 1 and 2) alloys were fabricated by melt spinning under Ar atmosphere. The Effects of Sc on the microstructural and thermal properties and microhardness values were investigated by scanning electron microscopy (SEM), X-ray diffractometer (XRD) and a Vickers microhardness tester. Experimental results revealed that the addition of 2 wt. % Sc to melt-spun Al-10Ni alloys changed their brittle nature and hindered formation of cracks. The addition of Sc to melt-spun Al-10Ni alloys also changed the morphology of Al3 Ni intermetallics from an acicular/needle – like to a rounded particle-like structure and led to reduction in their size. Formation of the metastable Al9 Ni2 phase was observed due to the higher constitutional undercooling caused by Sc addition. A considerable improvement in microhardness value (from 95. 9 to 230. 1 HV) was observed with the addition of Sc.
Twórcy
  • Kastamonu University, Faculty of Engineering, Department of Materials Science and Nanotechnology Engineering, 37150 Kastamonu, Turkey
autor
  • Erciyes University, Kayseri Vocational School, Department of Automotive Technology, 38039 Kayseri, Turkey
Bibliografia
  • [1] E. J. Lavernia, T.S. Srivatsan, J. Mater. Sci. 45 (2), 287-325 (2010).
  • [2] H. Jones, Mater. Sci. Eng. A 304-306, 11-19 (2004).
  • [3] T. S. Kim, S. J. Hong, B. T. Lee, Mater. Sci. Eng. A 363, 81-85 (2003).
  • [4] H. Sieber, J. S. Park, J. Weıssmüller, J. H. Perepezko, Acta Mater. 49, 1139-1151 (2001).
  • [5] E. F. Matthys, W. G. Truckner (Ed.), Melt spinning, Strip Casting and Slab Casting, TMS, Warrendale, 1996.
  • [6] M. T. Clavaguera-Mora, J. Rodriguez-Viejo, D. Jacovkis, J. L. Touron, N. Clavaguera, W. S. Howells, J. Non-Cryst. Solids 287, 162-166 (2001).
  • [7] F. Audebert, C. Mendive, A. Vidal, Mater. Sci. Eng. A 375-377, 1196-1200 (2004).
  • [8] N. S. Stoloff, C. T. Liu, S. C. Deevi. Intermetallics 9-11, 1313-1320 (2008).
  • [9] S. H. Wang, X. F. Bian, J Alloy Compd. 453, 127-139 (2008).
  • [10] G. Gonzalez, G. A. Rodriguez, S. A. Jimenez., W. Saikaly, A. Charai, Mater. Charact. 59, 1607-1612 (2008).
  • [11] H. Okamoto, Phase diagrams for binary alloys. Materials Park (USA): ASM International 426, 311 (2000).
  • [12] P. Nandi, S. Suwas, S. Kumar, K. Chattopadhyay, Metall. Mater. Trans. A 44A, 2591-2603 (2013).
  • [13] Y. Castrillejo, A. Vega, M. Vega, P. Hernández, J. A. Rodriguez, E. Barrado, Electrochem. Acta 118, 58-66 (2014).
  • [14] M. F. Kilicaslan, F. Yilmaz, S. J Hong, O. Uzun, Mater. Sci. Eng. A 556, 716-721 (2012).
  • [15] M. F. Kilicaslan, F. Yilmaz, S. Ergen. S. J. Hong, O. Uzun, Mater. Charact. 77, 15-22 (2013).
  • [16] W. Prukkanon, N. Srisukhumbowornchai, C. Limmaneevichitr, J. Alloy Compd. 477, 454-460 (2009).
  • [17] W. G. Zhang, Y. C. Ye, L. J. He, P. J. Li, X. Feng, L. S. Novikov, Mater. Sci. Eng. A 578, 35-45 (2013).
  • [18] L. Zhang, Y. Du, Comput. Coup. Phase. Diag. Thermochem. 31, 529-540 (2007).
  • [19] A. Yamamoto, H. Tsubakino, Scripta Mater. 37, 1721-1725 (1997).
  • [20] K. Morsi, Mater. Sci. and Eng. R A299, 1-15 (2009).
  • [21] S. J. Hong, C. Suryanarayana, Metall. Mater. Trans. A 36A, 715-723 (2005).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-230ae4ef-c200-4207-acb6-c60a1e507c6b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.